skip to main content

Search for: All records

Creators/Authors contains: "Zimmerman, Jess"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 25, 2025
  2. Abstract

    Droughts are predicted to become more frequent and intense in many tropical regions, which may cause shifts in plant community composition. Especially in diverse tropical communities, understanding how traits mediate demographic responses to drought can help provide insight into the effects of climate change on these ecosystems. To understand tropical tree responses to reduced soil moisture, we grew seedlings of eight species across an experimental soil moisture gradient at the Luquillo Experimental Forest, Puerto Rico. We quantified survival and growth over an 8‐month period and characterized demographic responses in terms of tolerance to low soil moisture—defined as survival and growth rates under low soil moisture conditions—and sensitivity to variation in soil moisture—defined as more pronounced changes in demographic rates across the observed range of soil moisture. We then compared demographic responses with interspecific variation in a suite of 11 (root, stem, and leaf) functional traits, measured on individuals that survived the experiment. Lower soil moisture was associated with reduced survival and growth but traits mediated species‐specific responses. Species with relatively conservative traits (e.g., high leaf mass per area), had higher survival at low soil moisture whereas species with more extensive root systems were more sensitive to soil moisture, in that they exhibited more pronounced changes in growth across the experimental soil moisture gradient. Our results suggest that increasing drought will favor species with more conservative traits that confer greater survival in low soil moisture conditions.

    more » « less
  3. Abstract

    Projected increases in hurricane intensity under a warming climate will have profound effects on many forest ecosystems. One key challenge is to disentangle the effects of wind damage from the myriad factors that influence forest structure and species distributions over large spatial scales. Here, we employ a novel machine learning framework with high‐resolution aerial photos, and LiDAR collected over 115 km2of El Yunque National Forest in Puerto Rico to examine the effects of topographic exposure to two hurricanes, Hugo (1989) and Georges (1998), and several landscape‐scale environmental factors on the current forest height and abundance of a dominant, wind‐resistant species, the palmPrestoea acuminata var. montana. Model predictions show that the average density of the palm was 32% greater while the canopy height was 20% shorter in forests exposed to the two storms relative to unexposed areas. Our results demonstrate that hurricanes have lasting effects on forest canopy height and composition, suggesting the expected increase in hurricane severity with a warming climate will alter coastal forests in the North Atlantic.

    more » « less
  4. Abstract

    Numerous studies have shown reduced performance in plants that are surrounded by neighbours of the same species1,2, a phenomenon known as conspecific negative density dependence (CNDD)3. A long-held ecological hypothesis posits that CNDD is more pronounced in tropical than in temperate forests4,5, which increases community stabilization, species coexistence and the diversity of local tree species6,7. Previous analyses supporting such a latitudinal gradient in CNDD8,9have suffered from methodological limitations related to the use of static data10–12. Here we present a comprehensive assessment of latitudinal CNDD patterns using dynamic mortality data to estimate species-site-specific CNDD across 23 sites. Averaged across species, we found that stabilizing CNDD was present at all except one site, but that average stabilizing CNDD was not stronger toward the tropics. However, in tropical tree communities, rare and intermediate abundant species experienced stronger stabilizing CNDD than did common species. This pattern was absent in temperate forests, which suggests that CNDD influences species abundances more strongly in tropical forests than it does in temperate ones13. We also found that interspecific variation in CNDD, which might attenuate its stabilizing effect on species diversity14,15, was high but not significantly different across latitudes. Although the consequences of these patterns for latitudinal diversity gradients are difficult to evaluate, we speculate that a more effective regulation of population abundances could translate into greater stabilization of tropical tree communities and thus contribute to the high local diversity of tropical forests.

    more » « less
    Free, publicly-accessible full text available March 21, 2025
  5. Abstract

    Collaboration between ecologists and learning scientists can give rise to powerful models for scientific outreach within ecology. This paper presents a process by which learning scientists and ecologists codesigned a science curriculum that invites students to join an ecological community of practice. In theJourney to El Yunquemiddle school science curriculum, students engage with simulation models generated from data gathered by Luquillo Long Term Ecological Research (LUQ LTER) scientists.Journey to El Yunquestudents can explore post‐hurricane population changes in yagrumo (Cecropia schreberiana), tabonuco (Dacryodes excelsa), coquís (Eleutherodactylus coquí), snails (Caracolus caracola), anoles (Anolis stratulusandA. gundlachi), veiled stinkhorn mushrooms (Dictyophora indusiata), and caterpillars (Historis odius). Ecology‐based revisions toJourney to El Yunquehave included adding models of the effects of repeated hurricanes on limiting factors, based in part on findings from a canopy trimming experiment. Revisions based on classroom testing include simplifying student‐facing model controls to allow students to focus on the essential model components. The ongoing collaboration that keeps theJourney to El Yunquecurriculum on the cutting edge of ecological and educational advances has been sustained for over two decades. We attribute the longevity of this work to (1) the long‐term nature of LUQ LTER, (2) a sustained interdisciplinary collaboration, and (3) our long‐term relationships with schools.

    more » « less
  6. Abstract Background and Aims

    Understanding shifts in the demographic and functional composition of forests after major natural disturbances has become increasingly relevant given the accelerating rates of climate change and elevated frequency of natural disturbances. Although plant demographic strategies are often described across a slow–fast continuum, severe and frequent disturbance events influencing demographic processes may alter the demographic trade-offs and the functional composition of forests. We examined demographic trade-offs and the shifts in functional traits in a hurricane-disturbed forest using long-term data from the Luquillo Forest Dynamics Plot (LFPD) in Puerto Rico.


    We analysed information on growth, survival, seed rain and seedling recruitment for 30 woody species in the LFDP. In addition, we compiled data on leaf, seed and wood functional traits that capture the main ecological strategies for plants. We used this information to identify the main axes of demographic variation for this forest community and evaluate shifts in community-weighted means for traits from 2000 to 2016.

    Key Results

    The previously identified growth–survival trade-off was not observed. Instead, we identified a fecundity–growth trade-off and an axis representing seedling-to-adult survival. Both axes formed dimensions independent of resprouting ability. Also, changes in tree species composition during the post-hurricane period reflected a directional shift from seedling and tree communities dominated by acquisitive towards conservative leaf economics traits and large seed mass. Wood specific gravity, however, did not show significant directional changes over time.


    Our study demonstrates that tree demographic strategies coping with frequent storms and hurricane disturbances deviate from strategies typically observed in undisturbed forests, yet the shifts in functional composition still conform to the expected changes from acquisitive to conservative resource-uptake strategies expected over succession. In the face of increased rates of natural and anthropogenic disturbance in tropical regions, our results anticipate shifts in species demographic trade-offs and different functional dimensions.

    more » « less
  7. Abstract

    Trait variation across individuals and species influences the resistance and resilience of ecosystems to disturbance, and the ability of individuals to capitalize on postdisturbance conditions. In trees, the anatomical structure of xylem directly affects plant function and, consequently, it is a valuable lens through which to understand resistance and resilience to disturbance.

    To determine how hurricanes affect wood anatomy of tropical trees, we characterized a set of anatomical traits in wood produced before and after a major hurricane for 65 individuals of 10 Puerto Rican tree species. We quantified variation at different scales (among and within species, and within individuals) and determined trait shifts between the pre‐ and posthurricane periods. We also assessed correlations between traits and growth rates.

    While the majority of anatomical trait variation occurred among species, we also observed substantial variation within species and individuals. Within individuals, we found significant shifts for some traits that generally reflected increased hydraulic conductivity in the posthurricane period. We found weak evidence for an association between individual xylem anatomical traits and diameter growth rates.

    Ultimately, within‐individual variation of xylem anatomical traits observed in our study could be related to posthurricane recovery and overall growth (e.g. canopy filling). Other factors, however, likely decouple a relationship between xylem anatomy and diameter growth. While adjustments of wood anatomy may enable individual trees to capitalize on favourable postdisturbance conditions, these may also influence their future responses or vulnerability to subsequent disturbances.

    Read the freePlain Language Summaryfor this article on the Journal blog.

    more » « less