Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Bijker, R; Marín_Lámbarri, DJ; Yépez_Martínez, TC (Ed.)The Cabibbo-Kobayashi-Maskawa quark mixing matrix currently does not satisfy unitarity at the 2σ-level. This could be the result of an inaccurate value of one or both of its largest matrix elementsVusandVud. In the case ofVud, the most precise measurement is obtained from thef t-value measurements of superallowed beta-transitions between 0+states. The accuracy of this determination can, in turn, be tested by extractingVudin other transitions including superallowed transitions between mirror nuclei. The Superallowed Transition Beta-Neutrino Decay Ion Coincidence Trap (St. Benedict) is currently under construction at the Nuclear Science Laboratory of the University of Notre Dame to perform such a determination, with the goal of shedding more light on this tension with unitarity. St. Benedict will take a radioactive ion beam produced byTwinSol, thermalize it in a large volume gas catcher, then transport it in two separate differentially-pumped volumes using a radio-frequency (RF) carpet and a radio-frequency quadrupole (RFQ) ion guide before injecting it in an RFQ trap to create cool ion bunches for injection in the measurement Paul trap. In this paper, we detail the installation of the beam preparation components of St. Benedict, and present the results of the first RIBs successfully stopped and extracted from its gas catcher.more » « less
-
Pakou, A; Souliotis, G; Moustakidis, C (Ed.)In this work, we report the measurement of elastic and Coulomb break-up channels in6He+208Pb collisions at Elab= 19.3 MeV, close to the Coulomb barrier of this system ∼ 19 MeV. In the context of the astrophysical r-process, the reaction4He(2n,γ)6He has been proposed to be a key reaction in the path of synthesizing seed nuclei for the r-process, as12C, in an environment composed mainly of alpha particles and neutrons. Based on a theoretical approach for treating three body reactions by means of which its reaction rate can be inferred, our experimental approach aims to obtain an indirect measurement of the reaction rate of4He(2n,γ)6He by measuring the Coulomb breakup of6He under the intense electric field produced by a208Pb target nucleus. The experiment was carried out at the TriSol facility operated in the Nuclear Science Laboratory of the University of Notre Dame, USA, which delivered a6He beam together with other contaminants. Particular care must be taken for the alpha particles produced in the production reaction.more » « less