skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00PM ET on Friday, December 15 until 2:00 AM ET on Saturday, December 16 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Zobel, Christopher W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Building community resilience has become a national imperative. Substantial uncertainties in dynamic environments of emergencies and crises require real‐time information collection and dissemination based on big data analytics. These, in turn, require networked communities and cross‐sector partnerships to build lasting resilience. This viewpoint article highlights an interdisciplinary approach to building community resilience through community‐engaged research and partnerships. This perspective leverages existing community partnerships and network resources, undertakes an all‐hazard and whole‐community approach, and evaluates the use of state‐of‐the‐art information communication technologies. In doing so, it reinforces the multifaceted intergovernmental and cross‐sector networks through which resilience can be developed and sustained. 
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  2. The local government’s continuous support is critical for the well-being of a community during disaster events. E-Government systems that establish and maintain ongoing connections with the community thus play a vital role in supporting crisis response and recovery. Such systems’ ability to adapt to the crisis circumstances and to address emergent needs helps them continue their fundamental functions during disasters. Considering various services might require different amounts and types of resources, prioritization strategies are helpful in determining the processing order of requests. This paper discusses the role of prioritizing services within an e-Government system, to better understand how such a system can be managed to best utilize available resources. The study examines how a well-functioning e-Government system, the Orange County, Florida 311 non-emergency service system, responded to the COVID-19 pandemic and how the changes in service operations requirements can affect service provision, specifically with respect to assigning or re-assigning priority levels. 
    more » « less
    Free, publicly-accessible full text available January 1, 2024
  3. This study draws from the system resilience literature to propose three different metrics for evaluating the resilience performance of organizations against disruptions: the initial loss due to the disruption, the maximum loss, and the total loss over time. In order to show the usefulness of the developed metrics in practice, we deploy these metrics to study the effectiveness of two resilience strategies: maintaining operational slack and broadening operational scope, by empirically analyzing the performance of manufacturing firms that experienced a disruption during the period from 2005 to the end of 2014. The results show that maintaining certain aspects of operational slack and broadening business scope and geographic scope can affect these different metrics in different ways. Our results help decisionmakers in risk management to gain a better understanding of the conditions under which the recommended strategies actually improve organizations’ resilience, as well as the ways in which they may do so. 
    more » « less
  4. null (Ed.)
    Purpose When a large-scale outbreak such as the COVID-19 pandemic happens, organizations that are responsible for delivering relief may face a lack of both provisions and human resources. Governments are the primary source for the humanitarian supplies required during such a crisis; however, coordination with humanitarian NGOs in handling such pandemics is a vital form of public-private partnership (PPP). Aid organizations have to consider not only the total degree of demand satisfaction in such cases but also the obligation that relief goods such as medicine and foods should be distributed as equitably as possible within the affected areas (AAs). Design/methodology/approach Given the challenges of acquiring real data associated with procuring relief items during the COVID-19 outbreak, a comprehensive simulation-based plan is used to generate 243 small, medium and large-sized problems with uncertain demand, and these problems are solved to optimality using GAMS. Finally, post-optimality analyses are conducted, and some useful managerial insights are presented. Findings The results imply that given a reasonable measure of deprivation costs, it can be important for managers to focus less on the logistical costs of delivering resources and more on the value associated with quickly and effectively reducing the overall suffering of the affected individuals. It is also important for managers to recognize that even though deprivation costs and transportation costs are both increasing as the time horizon increases, the actual growth rate of the deprivation costs decreases over time. Originality/value In this paper, a novel mathematical model is presented to minimize the total costs of delivering humanitarian aid for pandemic relief. With a focus on sustainability of operations, the model incorporates total transportation and delivery costs, the cost of utilizing the transportation fleet (transportation mode cost), and equity and deprivation costs. Taking social costs such as deprivation and equity costs into account, in addition to other important classic cost terms, enables managers to organize the best possible response when such outbreaks happen. 
    more » « less
  5. null (Ed.)
    The worldwide healthcare and economic crisis caused by the COVID-19 pandemic highlights the need for a deeper understanding of investing in the mitigation of epidemic risks. To address this, we built a mathematical model to optimize investments into two types of measures for mitigating the risks of epidemic propagation: prevention/containment measures and treatment/recovery measures. The new model explicitly accounts for the characteristics of networks of individuals, as a critical element of epidemic propagation. Subsequent analysis shows that, to combat an epidemic that can cause significant negative impact, optimal investment in either category increases with a higher level of connectivity and intrinsic loss, but it is limited to a fraction of that total potential loss. However, when a fixed and limited mitigation investment is to be apportioned among the two types of measures, the optimal proportion of investment for prevention and containment increases when the investment limit goes up, and when the network connectivity decreases. Our results are consistent with existing studies and can be used to properly interpret what happened in past pandemics as well as to shed light on future and ongoing events such as COVID-19. 
    more » « less
  6. null (Ed.)
  7. Abstract

    Building an interdisciplinary team is critical to disaster response research as it often deals with acute onset events, short decision horizons, constrained resources, and uncertainties related to rapidly unfolding response environments.  This article examines three teaming mechanisms for interdisciplinary disaster response research, includingad hocand/or grant proposal driven teams, research center or institute based teams, and teams oriented by matching expertise toward long‐term collaborations. Using hurricanes as the response context, it further examines several types of critical data that require interdisciplinary collaboration on collection, integration, and analysis. Last, suggesting a data‐driven approach to engaging multiple disciplines, the article advocates building interdisciplinary teams for disaster response research with a long‐term goal and an integrated research protocol.

    more » « less