Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ethics and social responsibility are often viewed as key areas of concern for many engineering educators and professional engineers. Thus, it is important to consider how students and professionals understand and navigate ethical issues, explore how such perceptions and abilities change over time, and investigate if certain types of interventions and experiences (e.g., coursework, training, service activities, etc.) impact individual participants. The breadth of engineering as a profession also raises questions about how ethics and social responsibility are understood across a wide range of disciplines, subfields, and industry sectors. Recognizing a need for more empirical research to address such questions, our research team carried out a five year, longitudinal, mixed-methods study to explore students’ perceptions of ethics and social responsibility. This study relied on repeated use of quantitative measures related to ethics, along with qualitative interviews to explore how students’ perceptions of these issues change across time, between institutions, and in response to participation in certain experiences. Additionally, we are now initiating a follow-on study where we will collect survey and interview data from our previous participants now that most of them are in full-time job roles and/or pursuing graduate degrees, as well as from a new group of earlymore »
-
Amidst growing concerns about a lack of attention to ethics in engineering education and professional practice, a variety of formal course-based interventions and informal or extracurricular programs have been created to improve the social and ethical commitments of engineering graduates. To supplement the formal and informal ethics education received as undergraduate students, engineering professionals often also participate in workplace training and professional development activities on ethics, compliance, and related topics. Despite this preparation, there is growing evidence to suggest that technical professionals are often challenged to navigate ethical situations and dilemmas. Some prior research has focused on assessing the impacts of a variety of learning experiences on students’ understandings of ethics and social responsibility, including the PIs’ prior NSF-funded CCE STEM study which followed engineering students through the four years of their undergraduate studies using both quantitative and qualitative research methods. This prior project explored how the students’ views on these topics changed across demographic groups, over time, between institutions, and due to specific interventions. Yet, there has been little longitudinal research on how these views and perceptions change (or do not change) among engineers during the school-to-work transition. Furthermore, there has been little exploration of how these views aremore »
-
In our NSF RFE sponsored research project, we have been investigating the intersection of three goals in engineering education: professional formation of students, an integrated sociotechnical perception of engineering, and increased diversity and inclusion. We approached this investigation into possible social change with design thinking. We engaged with faculty, staff, and students in a collaborative design process as part of a comparative study of two engineering departments – the School of Electrical and Computer Engineering (ECE) and Weldon School of Biomedical Engineering (BME) – at Purdue University. Our project has been organized around the three phases of the design process (inspiration, ideation, and implementation), and embedded within the design process is a longitudinal, multiphase, mixed-methods study. During this third phase of the project, implementation, we have been both challenged and enabled by events and shifting conversations around the viral pandemic of disease and the widespread activism around racial injustice. In this paper, we provide an overview of the larger project’s previous analyses of the surveys and interview data from faculty, staff, administrators, students, and alumni in both ECE and BME which we have conducted. These analyses will provide insight on the indirect and/or longer-term impact on the school’s cultures andmore »
-
Ethics and social responsibility have frequently been identified as important areas of practice for professional engineers. Thus, measuring engineering ethics and social responsibility is critical to assessing the abilities of engineering students, understanding how those abilities change over time, and exploring the impacts of certain ethical interventions, such as coursework or participation in extracurricular activities. However, measurement of these constructs is difficult, as they are complex and multi-faceted. Much prior research has been carried out to develop and assess ethical interventions in engineering education, but the findings have been mixed, in part because of these measurement challenges. To address this variation in prior work, we have designed and carried out a five year, longitudinal, mixed-methods study to explore students’ perceptions of ethics and social responsibility. This study relies on both repeated use of quantitative measures related to ethics and repeated qualitative interviews to explore how students’ perceptions of these issues change across time, between institutions, and in response to participation in certain experiences. This paper focuses on the thematic analysis and preliminary results of the 33 pairs of interviews that were gathered from participants at three different universities in Year 1 and Year 4 of their undergraduate studies. Given themore »
-
Scholars of engineering education have acknowledged a need for greater connection between research and engineering teaching practice in order to see sustainable change in engineering schools. This study examines the contrast between STEM education research on the positive impact of faculty on diversity and inclusion and some engineering faculty’s lack of actual involvement with these issues. We examine the faculty of an electrical and computer engineering (ECE) department at Purdue University using Fishbein and Ajzen’s reasoned action model for behavior to determine factors in the department that influence faculty’s intention to make change for diversity and inclusion. We conducted interviews with ECE faculty about diversity, inclusion and department culture, and then an inductive thematic analysis organized around the reasoned action model. The major themes revealed that many faculty do not see involvement with diversity and inclusion as a norm in the department, and do not recognize their power to influence these issues. Our conclusions provide recommendations for engineering departments to meaningfully involve their faculty in improving diversity and inclusion.
-
The low numbers of women and underrepresented minorities in engineering has often been characterized as a ‘pipeline problem,’ wherein few members of these groups choose engineering majors or ‘leak out’ of the engineering education pipeline before graduating [1]. Within this view, the difficulty of diversifying the engineering workforce can be addressed by stocking the pipeline with more diverse applicants. However, the assumption that adding more underrepresented applicants will solve the complex and persistent issues of diversity and inclusion within engineering has been challenged by recent research. Studies of engineering culture highlight how the persistence of women and minorities is linked to norms and assumptions of engineering cultures (e.g., [2], [3]). For example, some engineering cultures have been characterized as masculine, leading women to feel that they must become ‘one of the guys’ to fit in and be successful (e.g., [4]). In the U.S., engineering cultures are also predominantly white, which can make people of color feel unwelcome or isolated [5]. When individuals feel unwelcome in engineering cultures, they are likely to leave. Thus, engineering culture plays an important role in shaping who participates and successfully persists in engineering education and practice. Likewise, disciplinary cultures in engineering education also carry assumptionsmore »
-
We are focusing on three interconnected issues that negatively impact engineering disciplinary cultures: (1) diversity and inclusion issues that continue to plague engineering programs; (2) lack of adequate preparation for professional practices; (3) and exclusionary engineering disciplinary cultures that privilege technical knowledge over other forms of knowledge [1]. Although much effort has been devoted to these issues, traditional strategic and problem-solving orientations have not resulted in deep cultural transformations in many engineering programs. We posit that these three issues that are wicked problems. Wicked problems are ambiguous, interrelated and require complex problem-scoping and solutions that are not amenable with traditional and linear strategic planning and problem-solving orientations [2]. As design thinking provides an approach to solve complex problems that occur in organizational cultures [3], we argue that these wicked problems of engineering education cultures might be best understood and resolved through design thinking. As Elsbach and Stigliani contend, “the effective use of design thinking tools in organizations had a profound effect on organizational culture” [3, p. 2279]. However, not all organizational cultures support design thinking approaches well. Despite increasing calls to teach design as a central part of professional formation (e.g., ABET, National Academy of Engineers, etc.), many engineering programs,more »
-
Exploring Diversity and Inclusion in the Professional Formation of Engineers through Design SessionsThis Research Work-in-Progress paper builds on previous literature related to the professional formation of engineers and issues pertaining to diversity and inclusion within engineering though a comparative analysis of two different disciplines. These issues are complex, interrelated and challenging to untangle, and thus require innovative strategies to explore them. Our larger study utilizes design thinking with an embedded mixed-methods research approach to investigate foundational understandings of professional formation and diversity and inclusion in engineering. Herein, we describe preliminary findings from co-design sessions we conducted in Biomedical Engineering (BME) and Electrical and Computer Engineering (ECE) at Purdue University. We compare the design solutions generated by stakeholders and discuss insights regarding the unique contexts and needs of each program, as well as the impacts of the different activities and contexts of the design sessions themselves.