skip to main content

Search for: All records

Creators/Authors contains: "Zona, Donatella"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2024
  2. Abstract Photosynthesis of terrestrial ecosystems in the Arctic-Boreal region is a critical part of the global carbon cycle. Solar-induced chlorophyll Fluorescence (SIF), a promising proxy for photosynthesis with physiological insight, has been used to track gross primary production (GPP) at regional scales. Recent studies have constructed empirical relationships between SIF and eddy covariance-derived GPP as a first step to predicting global GPP. However, high latitudes pose two specific challenges: (a) Unique plant species and land cover types in the Arctic–Boreal region are not included in the generalized SIF-GPP relationship from lower latitudes, and (b) the complex terrain and sub-pixel land cover further complicate the interpretation of the SIF-GPP relationship. In this study, we focused on the Arctic-Boreal vulnerability experiment (ABoVE) domain and evaluated the empirical relationships between SIF for high latitudes from the TROPOspheric Monitoring Instrument (TROPOMI) and a state-of-the-art machine learning GPP product (FluxCom). For the first time, we report the regression slope, linear correlation coefficient, and the goodness of the fit of SIF-GPP relationships for Arctic-Boreal land cover types with extensive spatial coverage. We found several potential issues specific to the Arctic-Boreal region that should be considered: (a) unrealistically high FluxCom GPP due to the presence of snow and water at the subpixel scale; (b) changing biomass distribution and SIF-GPP relationship along elevational gradients, and (c) limited perspective and misrepresentation of heterogeneous land cover across spatial resolutions. Taken together, our results will help improve the estimation of GPP using SIF in terrestrial biosphere models and cope with model-data uncertainties in the Arctic-Boreal region. 
    more » « less
  3. Abstract

    Wetlands are responsible for 20%–31% of global methane (CH4) emissions and account for a large source of uncertainty in the global CH4budget. Data‐driven upscaling of CH4fluxes from eddy covariance measurements can provide new and independent bottom‐up estimates of wetland CH4emissions. Here, we develop a six‐predictor random forest upscaling model (UpCH4), trained on 119 site‐years of eddy covariance CH4flux data from 43 freshwater wetland sites in the FLUXNET‐CH4 Community Product. Network patterns in site‐level annual means and mean seasonal cycles of CH4fluxes were reproduced accurately in tundra, boreal, and temperate regions (Nash‐Sutcliffe Efficiency ∼0.52–0.63 and 0.53). UpCH4 estimated annual global wetland CH4emissions of 146 ± 43 TgCH4 y−1for 2001–2018 which agrees closely with current bottom‐up land surface models (102–181 TgCH4 y−1) and overlaps with top‐down atmospheric inversion models (155–200 TgCH4 y−1). However, UpCH4 diverged from both types of models in the spatial pattern and seasonal dynamics of tropical wetland emissions. We conclude that upscaling of eddy covariance CH4fluxes has the potential to produce realistic extra‐tropical wetland CH4emissions estimates which will improve with more flux data. To reduce uncertainty in upscaled estimates, researchers could prioritize new wetland flux sites along humid‐to‐arid tropical climate gradients, from major rainforest basins (Congo, Amazon, and SE Asia), into monsoon (Bangladesh and India) and savannah regions (African Sahel) and be paired with improved knowledge of wetland extent seasonal dynamics in these regions. The monthly wetland methane products gridded at 0.25° from UpCH4 are available via ORNL DAAC (

    more » « less
    Free, publicly-accessible full text available October 1, 2024
  4. Abstract. The warming of the Arctic is affecting the carbon cycle of tundraecosystems. Most research on carbon fluxes from Arctic tundra ecosystems hasfocused on abiotic environmental controls (e.g., temperature, rainfall, orradiation). However, Arctic tundra vegetation, and therefore the carbonbalance of these ecosystems, can be substantially impacted by herbivory. Inthis study we tested how vegetation consumption by brown lemmings (Lemmus trimucronatus) canimpact carbon exchange of a wet-sedge tundra ecosystem near Utqiaġvik,Alaska during the summer and the recovery of vegetation during the followingsummer. We placed brown lemmings in individual enclosure plots and testedthe impact of lemmings' herbivory on carbon dioxide (CO2) fluxes, methane(CH4) fluxes, and the normalized difference vegetation index (NDVI)immediately after lemming removal and during the following growing season.During the first summer of the experiment, lemmings' herbivory reduced plantbiomass (as shown by the decrease in the NDVI) and decreased net CO2uptake while not significantly impacting CH4 emissions. CH4emissions were likely not significantly affected due to CH4 beingproduced deeper in the soil and escaping from the stem bases of the vascularplants. The summer following the lemming treatments, NDVI and net CO2fluxes returned to magnitudes similar to those observed before the start ofthe experiment, suggesting a complete recovery of the vegetation and atransitory nature of the impact of lemming herbivory. Overall, lemmingherbivory has short-term but substantial effects on carbon sequestration byvegetation and might contribute to the considerable interannual variabilityin CO2 fluxes from tundra ecosystems. 
    more » « less
  5. Spatial heterogeneity in methane (CH 4 ) flux requires a reliable upscaling approach to reach accurate regional CH 4 budgets in the Arctic tundra. In this study, we combined the CLM-Microbe model with three footprint algorithms to scale up CH 4 flux from a plot level to eddy covariance (EC) tower domains (200 m × 200 m) in the Alaska North Slope, for three sites in Utqiaġvik (US-Beo, US-Bes, and US-Brw), one in Atqasuk (US-Atq) and one in Ivotuk (US-Ivo), for a period of 2013–2015. Three footprint algorithms were the homogenous footprint (HF) that assumes even contribution of all grid cells, the gradient footprint (GF) that assumes gradually declining contribution from center grid cells to edges, and the dynamic footprint (DF) that considers the impacts of wind and heterogeneity of land surface. Simulated annual CH 4 flux was highly consistent with the EC measurements at US-Beo and US-Bes. In contrast, flux was overestimated at US-Brw, US-Atq, and US-Ivo due to the higher simulated CH 4 flux in early growing seasons. The simulated monthly CH 4 flux was consistent with EC measurements but with different accuracies among footprint algorithms. At US-Bes in September 2013, RMSE and NNSE were 0.002 μmol m −2  s −1 and 0.782 using the DF algorithm, but 0.007 μmol m −2  s −1 and 0.758 using HF and 0.007 μmol m −2  s −1 and 0.765 using GF, respectively. DF algorithm performed better than the HF and GF algorithms in capturing the temporal variation in daily CH 4 flux each month, while the model accuracy was similar among the three algorithms due to flat landscapes. Temporal variations in CH 4 flux during 2013–2015 were predominately explained by air temperature (67–74%), followed by precipitation (22–36%). Spatial heterogeneities in vegetation fraction and elevation dominated the spatial variations in CH 4 flux for all five tower domains despite relatively weak differences in simulated CH 4 flux among three footprint algorithms. The CLM-Microbe model can simulate CH 4 flux at both plot and landscape scales at a high temporal resolution, which should be applied to other landscapes. Integrating land surface models with an appropriate algorithm provides a powerful tool for upscaling CH 4 flux in terrestrial ecosystems. 
    more » « less
  6. Free, publicly-accessible full text available March 1, 2024
  7. Abstract The ongoing disproportionate increases in temperature and precipitation over the Arctic region may greatly alter the latitudinal gradients in greenup and snowmelt timings as well as associated carbon dynamics of tundra ecosystems. Here we use remotely-sensed and ground-based datasets and model results embedding snowmelt timing in phenology at seven tundra flux tower sites in Alaska during 2001–2018, showing that the carbon response to early greenup or delayed snowmelt varies greatly depending upon local climatic limits. Increases in net ecosystem productivity (NEP) due to early greenup were amplified at the higher latitudes where temperature and water strongly colimit vegetation growth, while NEP decreases due to delayed snowmelt were alleviated by a relief of water stress. Given the high likelihood of more frequent delayed snowmelt at higher latitudes, this study highlights the importance of understanding the role of snowmelt timing in vegetation growth and terrestrial carbon cycles across warming Arctic ecosystems. 
    more » « less