skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Zorn, Gilad"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    New, linear, segmented poly(peptide‐urethane‐urea) (PPUU) block copolymers are synthesized and their surface compositions are characterized with angle dependent X‐ray photoelectron spectroscopy (ADXPS) and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS). These new PPUU block copolymers contain three types of segments. The soft segment (SS) is poly(caprolactone diol) (PCL). The hard segment is lysine diisocyanate with a hydrazine chain extender. The oligopeptide segment (OPS) contains three types of amino acids (proline, hydroxyproline, and glycine). Incorporation of the OPS into the polyurethane backbone is done to provide a synthetic polymer material with controllable biodegradation properties. As biodegradation processes normally are initiated at the interface between the biomaterial and the living tissue, it is important to characterize the surface composition of biomaterials. ADXPS and ToF‐SIMS results show that the surfaces of all four polymers are enriched with the PCL SS, the most hydrophobic component of the three polymer segments.

     
    more » « less