skip to main content


Search for: All records

Creators/Authors contains: "Zou, Xun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. The Ross Ice Shelf, West Antarctica, experienced an extensive melt event in January 2016. We examine the representation of this event by the HIRHAM5 and MetUM high-resolution regional atmospheric models, as well as a sophisticated offline-coupled firn model forced with their outputs. The model results are compared with satellite-based estimates of melt days. The firn model estimates of the number of melt days are in good agreement with the observations over the eastern and central sectors of the ice shelf, while the HIRHAM5 and MetUM estimates based on their own surface schemes are considerably underestimated, possibly due to deficiencies in these schemes and an absence of spin-up. However, the firn model simulates sustained melting over the western sector of the ice shelf, in disagreement with the observations that show this region as being a melt-free area. This is attributed to deficiencies in the HIRHAM5 and MetUM output and particularly a likely overestimation of night-time net surface radiative flux. This occurs in response to an increase in night-time downwelling longwave flux from around 180–200 to 280 W m−2 over the course of a few days, leading to an excessive amount of energy at the surface available for melt. Satellite-based observations show that this change coincides with a transition from clear-sky to cloudy conditions, with clouds containing both liquid water and ice water. The models capture the initial clear-sky conditions but seemingly struggle to correctly represent cloud properties associated with the cloudy conditions, which we suggest is responsible for the radiative flux errors.

     
    more » « less
    Free, publicly-accessible full text available June 21, 2025
  2. Abstract. The Ross Ice Shelf, West Antarctica, experienced an extensive melt event in January 2016. We examine the representation of this event by the HIRHAM5 and MetUM high-resolution regional atmospheric models, as well as a sophisticated offline coupled firn model forced with their outputs. The model results are compared with satellite-based estimates of melt days. The firn model estimates of the number of melt days are in good agreement with the observations over the eastern and central sectors of the ice shelf, while the HIRHAM5 and MetUM estimates based on their own surface schemes are considerably underestimated, possibly due to deficiencies in these schemes and an absence of spin-up. However, the firn model simulates sustained melting over the western sector of the ice shelf, in disagreement with the observations that show this region as being melt-free. This is attributed to deficiencies in the HIRHAM5 and MetUM output, and particularly a likely overestimation of nighttime net surface radiative flux. This occurs in response to an increase in nighttime downwelling longwave flux from around 180–200 W m-2 to 280 W m-2 over the course of a few days, leading to an excessive amount of energy at the surface available for melt. Satellite-based observations show that this change coincides with a transition from clear-sky conditions to clouds containing both liquid-water and ice-water. The models capture the initial clear-sky conditions but seemingly struggle to correctly represent the ice-to-liquid mass partitioning associated with the cloudy conditions, which we suggest is responsible for the radiative flux errors.

     
    more » « less
    Free, publicly-accessible full text available October 25, 2024
  3. Roy M. Harrison (Ed.)
    Abstract

    The Antarctic Peninsula (AP) experienced a new extreme warm event and record-high surface melt in February 2022, rivaling the recent temperature records from 2015 and 2020, and contributing to the alarming series of extreme warm events over this region showing stronger warming compared to the rest of Antarctica. Here, the drivers and impacts of the event are analyzed in detail using a range of observational and modeling data. The northern/northwestern AP was directly impacted by an intense atmospheric river (AR) attaining category 3 on the AR scale, which brought anomalous heat and rainfall, while the AR-enhanced foehn effect further warmed its northeastern side. The event was triggered by multiple large-scale atmospheric circulation patterns linking the AR formation to tropical convection anomalies and stationary Rossby waves, with an anomalous Amundsen Sea Low and a record-breaking high-pressure system east of the AP. This multivariate and spatial compound event culminated in widespread and intense surface melt across the AP. Circulation analog analysis shows that global warming played a role in the amplification and increased probability of the event. Increasing frequency of such events can undermine the stability of the AP ice shelves, with multiple local to global impacts, including acceleration of the AP ice mass loss and changes in sensitive ecosystems.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  4. Abstract

    Forecasting Antarctic atmospheric, oceanic, and sea ice conditions on subseasonal to seasonal scales remains a major challenge. During both the freezing and melting seasons current operational ensemble forecasting systems show a systematic overestimation of the Antarctic sea-ice edge location. The skill of sea ice cover prediction is closely related to the accuracy of cloud representation in models, as the two are strongly coupled by cloud radiative forcing. In particular, surface downward longwave radiation (DLW) deficits appear to be a common shortcoming in atmospheric models over the Southern Ocean. For example, a recent comparison of ECMWF reanalysis 5th generation (ERA5) global reanalysis with the observations from McMurdo Station revealed a year-round deficit in DLW of approximately 50 Wm−2in marine air masses due to model shortages in supercooled cloud liquid water. A comparison with the surface DLW radiation observations from the Ocean Observatories Initiative mooring in the South Pacific at 54.08° S, 89.67° W, for the time period January 2016–November 2018, confirms approximately 20 Wm−2deficit in DLW in ERA5 well north of the sea-ice edge. Using a regional ocean model, we show that when DLW is artificially increased by 50 Wm−2in the simulation driven by ERA5 atmospheric forcing, the predicted sea ice growth agrees much better with the observations. A wide variety of sensitivity tests show that the anomalously large, predicted sea-ice extent is not due to limitations in the ocean model and that by implication the cause resides with the atmospheric forcing.

     
    more » « less
  5. null (Ed.)
  6. Abstract

    Data impact experiments are conducted employing the Polar Weather Research and Forecasting (WRF) model during the YOPP‐SH summer special observing period (SOP) using the Antarctic Mesoscale Prediction System (AMPS) framework to determine the forecast impact of numerous additional radiosondes collected during the SOP. Hybrid variational‐ensemble three‐dimensional data assimilation is performed on model forecast domains over Antarctica and the Southern Ocean using all regular observations normally available (Experiment “NoSOP”) and using the same set plus the extra soundings launched for the SOP (Experiment “SOP”). The SOP results show better near‐surface temperature and wind‐speed forecasts than the NoSOP results, primarily over West Antarctica. Radiosonde profiles confirm that temperature and wind‐speed forecasts are improved throughout the troposphere with the addition of the SOP radiosonde data, but the results for relative humidity are variable. Temperatures are improved at lower levels early in the forecasts, whereas wind speeds are better at higher levels later in the forecasts. An evaluation against the ERA5 global reanalysis that provides a much broader perspective reveals that the improved forecast skill for the SOP experiment persists up to 72 hours for temperature, wind speed, and relative humidity. The gains, however, are primarily confined to the Antarctic continent, consistent with the additional radiosonde spatial coverage being mainly poleward of 60°S. With extra radiosondes concentrated over the Antarctic Peninsula, SOP forecasts of the region downstream of the Peninsula were significantly improved compared to NoSOP forecasts. In addition, it is found that the assimilation of the additional radiosonde data can have a greater impact on the forecasts of strong cyclones, as shown for a major coastal cyclone affecting West Antarctica, with improvements in its magnitude and track. The results also suggest that increasing radiosonde launches at lower southern latitudes would improve forecasts over the Southern Ocean, especially during austral winter.

     
    more » « less
  7. We introduce and investigate the opportunities of multi-antenna communication schemes whose training and feedback stages are interleaved and mutually interacting. Specifically, unlike the traditional schemes where the transmitter first trains all of its antennas at once and then receives a single feedback message, we consider a scenario where the transmitter instead trains its antennas one by one and receives feedback information immediately after training each one of its antennas. The feedback message may ask the transmitter to train another antenna; or, it may terminate the feedback/training phase and provide the quantized codeword (e.g., a beamforming vector) to be utilized for data transmission. As a specific application, we consider a multiple-input single-output system with t transmit antennas, a short-term power constraint P, and target data rate ρ. We show that for any t, the same outage probability as a system with perfect transmitter and receiver channel state information can be achieved with a feedback rate of R1 bits per channel state and via training R2 transmit antennas on average, where R1 and R2 are independent of t, and depend only on ρ and P. In addition, we design variable-rate quantizers for channel coefficients to further minimize the feedback rate of our scheme. 
    more » « less