skip to main content


Search for: All records

Creators/Authors contains: "Zou, Yin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Accurate indoor positioning has attracted a lot of attention for a variety of indoor location-based applications, with the rapid development of mobile devices and their onboard sensors. A hybrid indoor localization method is proposed based on single off-the-shelf smartphone, which takes advantage of its various onboard sensors, including camera, gyroscope and accelerometer. The proposed approach integrates three components: visual-inertial odometry (VIO), point-based area mapping, and plane-based area mapping. A simplified RANSAC strategy is employed in plane matching for the sake of processing time. Since Apple's augmented reality platform ARKit has many powerful high-level APIs on world tracking, plane detection and 3D modeling, a practical smartphone app for indoor localization is developed on an iPhone that can run ARKit. Experimental results demonstrate that our plane-based method can achieve an accuracy of about 0.3 meter, which is based on a much more lightweight model, but achieves more accurate results than the point-based model by directly using ARKit's area mapping. The size of the plane-based model is less than 2KB for a closed-loop corridor area of about 45m*15m, comparing to about 10MB of the point-based model. 
    more » « less