- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Abdelfattah, Ahmad (2)
-
Dongarra, Jack (2)
-
Haidar, Azzam (2)
-
Tomov, Stanimire (2)
-
Zounon, Mawussi (2)
-
Costa, Timothy (1)
-
Gates, Mark (1)
-
Hammarling, Sven (1)
-
Higham, Nicholas J. (1)
-
Kurzak, Jakub (1)
-
Luszczek, Piotr (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)This article describes a standard API for a set of Batched Basic Linear Algebra Subprograms (Batched BLAS or BBLAS). The focus is on many independent BLAS operations on small matrices that are grouped together and processed by a single routine, called a Batched BLAS routine. The matrices are grouped together in uniformly sized groups, with just one group if all the matrices are of equal size. The aim is to provide more efficient, but portable, implementations of algorithms on high-performance many-core platforms. These include multicore and many-core CPU processors, GPUs and coprocessors, and other hardware accelerators with floating-point compute facility. As well as the standard types of single and double precision, we also include half and quadruple precision in the standard. In particular, half precision is used in many very large scale applications, such as those associated with machine learning.more » « less
-
Haidar, Azzam; Abdelfattah, Ahmad; Zounon, Mawussi; Tomov, Stanimire; Dongarra, Jack (, IEEE transactions on parallel and distributed systems)We present a high-performance GPU kernel with a substantial speedup over vendor libraries for very small matrix computations. In addition, we discuss most of the challenges that hinder the design of efficient GPU kernels for small matrix algorithms. We propose relevant algorithm analysis to harness the full power of a GPU, and strategies for predicting the performance, before introducing a proper implementation. We develop a theoretical analysis and a methodology for high-performance linear solvers for very small matrices. As test cases, we take the Cholesky and LU factorizations and show how the proposed methodology enables us to achieve a performance close to the theoretical upper bound of the hardware. This work investigates and proposes novel algorithms for designing highly optimized GPU kernels for solving batches of hundreds of thousands of small-size Cholesky and LU factorizations. Our focus on efficient batched Cholesky and batched LU kernels is motivated by the increasing need for these kernels in scientific simulations (e.g., astrophysics applications). Techniques for optimal memory traffic, register blocking, and tunable concurrency are incorporated in our proposed design. The proposed GPU kernels achieve performance speedups versus CUBLAS of up to 6× for the factorizations, using double precision arithmetic on an NVIDIA Pascal P100 GPU.more » « less