skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Zuber, K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Freeman, S. ; Lederer-Woods, C. ; Manna, A. ; Mengoni, A. (Ed.)
    The thermodynamical conditions and the neutron density produced in a laser-induced implosion of a deuterium-tritium (DT) filled capsule at the National Ignition Facility (NIF) are the closest laboratory analog of stellar conditions. We plan to investigate neutron-induced reactions on 40 Ar, namely the 40 Ar( n , 2 n ) 39 Ar( t 1/2 =268 y), the 40 Ar( n , γ) 41 Ar(110 min) and the potential rapid two-neutron capture reaction 40 Ar(2 n , γ) 42 Ar(33 y) in an Ar-loaded DT capsule. The chemical inertness of noble gas Ar enables reliable collection of the reaction products. 
    more » « less
    Free, publicly-accessible full text available January 1, 2024
  2. Free, publicly-accessible full text available March 1, 2024
  3. Abstract The search for neutrino events in correlation with 42 most intense fast radio bursts (FRBs) has been performed using the Borexino dataset from 05/2007 to 06/2021. We have searched for signals with visible energies above 250 keV within a time window of $$\pm \, 1000$$ ± 1000  s corresponding to detection time of a particular FRB. We also applied an alternative approach based on searching for specific shapes of neutrino-electron scattering spectra in the full exposure data of the Borexino detector. In particular, two incoming neutrino spectra were considered: the monoenergetic line and the spectrum expected from supernovae. The same spectra were considered for electron antineutrinos detected through inverse beta-decay reaction. No statistically significant excess over the background was observed. As a result, the strongest upper limits on FRB-associated neutrino fluences of all flavors have been obtained in the 0.5–50 MeV neutrino energy range. 
    more » « less
  4. Abstract Cosmogenic radio-nuclei are an important source of background for low-energy neutrino experiments. In Borexino, cosmogenic $$^{11}$$ 11 C decays outnumber solar pep and CNO neutrino events by about ten to one. In order to extract the flux of these two neutrino species, a highly efficient identification of this background is mandatory. We present here the details of the most consolidated strategy, used throughout Borexino solar neutrino measurements. It hinges upon finding the space-time correlations between $$^{11}$$ 11 C decays, the preceding parent muons and the accompanying neutrons. This article describes the working principles and evaluates the performance of this Three-Fold Coincidence (TFC) technique in its two current implementations: a hard-cut and a likelihood-based approach. Both show stable performances throughout Borexino Phases II (2012–2016) and III (2016–2020) data sets, with a $$^{11}$$ 11 C tagging efficiency of $$\sim 90$$ ∼ 90  % and $$\sim $$ ∼  63–66 % of the exposure surviving the tagging. We present also a novel technique that targets specifically $$^{11}$$ 11 C produced in high-multiplicity during major spallation events. Such $$^{11}$$ 11 C appear as a burst of events, whose space-time correlation can be exploited. Burst identification can be combined with the TFC to obtain about the same tagging efficiency of $$\sim 90\%$$ ∼ 90 % but with a higher fraction of the exposure surviving, in the range of $$\sim $$ ∼  66–68 %. 
    more » « less