Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Freeman, S. ; Lederer-Woods, C. ; Manna, A. ; Mengoni, A. (Ed.)The thermodynamical conditions and the neutron density produced in a laser-induced implosion of a deuterium-tritium (DT) filled capsule at the National Ignition Facility (NIF) are the closest laboratory analog of stellar conditions. We plan to investigate neutron-induced reactions on 40 Ar, namely the 40 Ar( n , 2 n ) 39 Ar( t 1/2 =268 y), the 40 Ar( n , γ) 41 Ar(110 min) and the potential rapid two-neutron capture reaction 40 Ar(2 n , γ) 42 Ar(33 y) in an Ar-loaded DT capsule. The chemical inertness of noble gas Ar enables reliable collection of the reaction products.more » « less
-
Free, publicly-accessible full text available November 1, 2024
-
Abstract The search for neutrino events in correlation with gravitational wave (GW) events for three observing runs (O1, O2 and O3) from 09/2015 to 03/2020 has been performed using the Borexino data-set of the same period. We have searched for signals of neutrino-electron scattering and inverse beta-decay (IBD) within a time window of
s centered at the detection moment of a particular GW event. The search was done with three visible energy thresholds of 0.25, 0.8 and 3.0 MeV. Two types of incoming neutrino spectra were considered: the mono-energetic line and the supernova-like spectrum. GW candidates originated by merging binaries of black holes (BHBH), neutron stars (NSNS) and neutron star and black hole (NSBH) were analyzed separately. Additionally, the subset of most intensive BHBH mergers at closer distances and with larger radiative mass than the rest was considered. In total, follow-ups of 74 out of 93 gravitational waves reported in the GWTC-3 catalog were analyzed and no statistically significant excess over the background was observed. As a result, the strongest upper limits on GW-associated neutrino and antineutrino fluences for all flavors ($$\pm \, 1000$$ ) at the level$$\nu _e, \nu _\mu , \nu _\tau $$ have been obtained in the 0.5–5 MeV neutrino energy range.$$10^9{-}10^{15}~\textrm{cm}^{-2}\,\textrm{GW}^{-1}$$ -
Abstract Xenon dual-phase time projections chambers (TPCs) have proven to be a successful technology in studying physical phenomena that require low-background conditions. With
of liquid xenon (LXe) in the TPC baseline design, DARWIN will have a high sensitivity for the detection of particle dark matter, neutrinoless double beta decay ($$40\,\textrm{t}$$ ), and axion-like particles (ALPs). Although cosmic muons are a source of background that cannot be entirely eliminated, they may be greatly diminished by placing the detector deep underground. In this study, we used Monte Carlo simulations to model the cosmogenic background expected for the DARWIN observatory at four underground laboratories: Laboratori Nazionali del Gran Sasso (LNGS), Sanford Underground Research Facility (SURF), Laboratoire Souterrain de Modane (LSM) and SNOLAB. We present here the results of simulations performed to determine the production rate of$$0\upnu \upbeta \upbeta $$ Xe, the most crucial isotope in the search for$${}^{137}$$ of$$0\upnu \upbeta \upbeta $$ Xe. Additionally, we explore the contribution that other muon-induced spallation products, such as other unstable xenon isotopes and tritium, may have on the cosmogenic background.$${}^{136}$$ -
Abstract The search for neutrino events in correlation with 42 most intense fast radio bursts (FRBs) has been performed using the Borexino dataset from 05/2007 to 06/2021. We have searched for signals with visible energies above 250 keV within a time window of $$\pm \, 1000$$ ± 1000 s corresponding to detection time of a particular FRB. We also applied an alternative approach based on searching for specific shapes of neutrino-electron scattering spectra in the full exposure data of the Borexino detector. In particular, two incoming neutrino spectra were considered: the monoenergetic line and the spectrum expected from supernovae. The same spectra were considered for electron antineutrinos detected through inverse beta-decay reaction. No statistically significant excess over the background was observed. As a result, the strongest upper limits on FRB-associated neutrino fluences of all flavors have been obtained in the 0.5–50 MeV neutrino energy range.more » « less