Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 19, 2026
-
Effective vector representation models, e.g., word2vec and node2vec, embed real-world objects such as images and documents in high dimensional vector space. In the meanwhile, the objects are often associated with attributes such as timestamps and prices. Many scenarios need to jointly query the vector representations of the objects together with their attributes. These queries can be formalized as range-filtering approximate nearest neighbor search (ANNS) queries. Specifically, given a collection of data vectors, each associated with an attribute value whose domain has a total order. The range-filtering ANNS consists of a query range and a query vector. It finds the approximate nearest neighbors of the query vector among all the data vectors whose attribute values fall in the query range. Existing approaches suffer from a rapidly degrading query performance when the query range width shifts. The query performance can be optimized by a solution that builds an ANNS index for every possible query range; however, the index time and index size become prohibitive -- the number of query ranges is quadratic to the number n of data vectors. To overcome these challenges, for the query range contains all attribute values smaller than a user-provided threshold, we design a structure called the segment graph whose index time and size are the same as a single ANNS index, yet can losslessly compress the n ANNS indexes, reducing the indexing cost by a factor of Ω(n). To handle general range queries, we propose a 2D segment graph with average-case index size O(n log n) to compress n segment graphs, breaking the quadratic barrier. Extensive experiments conducted on real-world datasets show that our proposed structures outperformed existing methods significantly; our index also exhibits superior scalability.more » « less
-
Given a collection of vectors, the approximate K-nearest-neighbor graph (KGraph for short) connects every vector to its approximate K-nearest-neighbors (KNN for short). KGraph plays an important role in high dimensional data visualization, semantic search, manifold learning, and machine learning. The vectors are typically vector representations of real-world objects (e.g., images and documents), which often come with a few structured attributes, such as times-tamps and locations. In this paper, we study the all-range approximate K-nearest-neighbor graph (ARKGraph) problem. Specifically, given a collection of vectors, each associated with a numerical search key (e.g., a timestamp), we aim to build an index that takes a search key range as the query and returns the KGraph of vectors whose search keys are within the query range. ARKGraph can facilitate interactive high dimensional data visualization, data mining, etc. A key challenge of this problem is the huge index size. This is because, given n vectors, a brute-force index stores a KGraph for every search key range, which results in O (K n 3 ) index size as there are O ( n 2 ) search key ranges and each KGraph takes O (K n ) space. We observe that the KNN of a vector in nearby ranges are often the same, which can be grouped together to save space. Based on this observation, we propose a series of novel techniques that reduce the index size significantly to just O (K n log n ) in the average case. Furthermore, we develop an efficient indexing algorithm that constructs the optimized ARKGraph index directly without exhaustively calculating the distance between every pair of vectors. To process a query, for each vector in the query range, we only need O (log log n + K log K) to restore its KNN in the query range from the optimized ARKGraph index. We conducted extensive experiments on real-world datasets. Experimental results show that our optimized ARKGraph index achieved a small index size, low query latency, and good scalability. Specifically, our approach was 1000x faster than the baseline method that builds a KGraph for all the vectors in the query range on-the-fly.more » « less
An official website of the United States government
