skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "and Salehi-Khojin, Amin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Transition metal dichalcogenides (TMDCs) have garnered much attention recently due to their remarkable performance for different electrochemical systems. In this study, we report on the synthesis and catalysis of less studied TMDC nanoflakes (NFs) with a design space comprised of three transition metals (rhenium, ruthenium, and iridium) and three chalcogens (sulfur, selenium, and tellurium) for the oxygen reduction and evolution reactions (ORR and OER) in an aprotic hybrid electrolyte containing 0.1 M lithium bis(trifluoromethanesulfonyl)imide salt in 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid and dimethyl sulfoxide. Our results indicate that among the tested catalysts, ReS2 exhibits the highest current density for both ORR and OER, beyond those of the state-of-the-art catalysts used in aprotic media with Li salts. We performed density functional calculations to provide a mechanistic understanding of the reactions in the ReS2 NFs/ionic liquid system. These novel bifunctional catalyst results could open a way for exploiting the unique properties of these materials in Li–O2 batteries as well as other important electrochemical systems. 
    more » « less