skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "and Windham-Myers, Lisamarie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Coastal marshes, mangroves, and seagrass sequester significant amounts of “blue carbon” in soils, sediments, and biomass. They have potential as a negative emissions technology. With the increasing policy focus on climate change mitigation, we need to understand and accurately predict wetland carbon processes. Complex interactions of climate, land use, sea level, nitrogen pollution, and human management regulate the strength of the carbon sink and the greenhouse gas balance (including CO2, CH4, and N2O). Our ability to measure and model vertical and lateral exchanges, as well as the soil and sediment processes, at the land-ocean interface is limited. We aim to bring together researchers from various disciplines to discuss coastal carbon and nitrogen pools and fluxes, and their roles in global biogeochemical cycling and climate change mitigation. We also aim to report advances in eddy flux, lateral flux, field experiments, remote sensing, modeling, and synthesis that support coastal wetland carbon accounting. 
    more » « less
  2. Coastal marshes, mangroves, and seagrass sequester significant amounts of “blue carbon” in soils, sediments, and biomass. They have potential as a negative emissions technology. With the increasing policy focus on climate change mitigation, we need to understand and accurately predict wetland carbon processes. Complex interactions of climate, land use, sea level, nitrogen pollution, and human management regulate the strength of the carbon sink and the greenhouse gas balance (including CO2, CH4, and N2O). Our ability to measure and model vertical and lateral exchanges, as well as the soil and sediment processes, at the land-ocean interface is limited. We aim to bring together researchers from various disciplines to discuss coastal carbon and nitrogen pools and fluxes, and their roles in global biogeochemical cycling and climate change mitigation. We also aim to report advances in eddy flux, lateral flux, field experiments, remote sensing, modeling, and synthesis that support coastal wetland carbon accounting. 
    more » « less