skip to main content

Search for: All records

Creators/Authors contains: "da Silva, C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Runaway electron acceleration is the keystone process responsible for the production of energetic radiation by lightning and thunderstorms. In the laboratory, it remains undetermined if runaway electrons are merely a consequence of high electric fields produced at the ionization fronts of electrical discharges, or if they impact the discharge formation and propagation. In this work, we simulate photon pileup in a detector next to a spark gap. We compare laboratory measurements to ensembles of monoenergetic electron beam simulations performed with Geant4 (using the Monte Carlo method). First, we describe the x-ray emission properties of monoenergetic beams with initial energies in the 20 to 75 keV range. Second, we introduce a series of techniques to combine monoenergetic beams to produce general-shape electron energy spectra. Third, we proceed to attempt to fit the experimental data collected in the laboratory, and to discuss the ambiguities created by photon pileup and how it constrains the amount of information that can be inferred from the measurements. We show that pileup ambiguities arise from the fact that every single monoenergetic electron beam produces photon deposited energy spectra of similar qualitative shape and that increasing the electron count in any beam has the same qualitative effect of shiftingmore »the peak of the deposited energy spectrum toward higher energies. The best agreement between simulations and measurements yields a mean average error of 8.6% and a R-squared value of 0.74.« less
    Free, publicly-accessible full text available May 1, 2023
  2. We discuss a new approach for jet physics analysis by using subtraction between cumulants of jet substructure observables. The subtracted cumulants are insensitive to soft-particle background uncorrelated with the hard process and allow comparisons between theoretical results and experimental measurements without the complication of soft background like underlying and pile-up events. We find our method using jet mass cumulants efficiently eliminates the background in Monte Carlo simulations and ATLAS jet mass measurements and they show a good agreement with our analytic calculations performed using soft-collinear effective theory.
  3. Free, publicly-accessible full text available October 1, 2023
  4. Abstract Conventional, hadronic matter consists of baryons and mesons made of three quarks and a quark–antiquark pair, respectively 1,2 . Here, we report the observation of a hadronic state containing four quarks in the Large Hadron Collider beauty experiment. This so-called tetraquark contains two charm quarks, a $$\overline{{{{{u}}}}}$$ u ¯ and a $$\overline{{{{{d}}}}}$$ d ¯ quark. This exotic state has a mass of approximately 3,875 MeV and manifests as a narrow peak in the mass spectrum of D 0 D 0 π + mesons just below the D *+ D 0 mass threshold. The near-threshold mass together with the narrow width reveals the resonance nature of the state.
    Free, publicly-accessible full text available July 1, 2023
  5. A bstract A precision measurement of the Z boson production cross-section at $$ \sqrt{\mathrm{s}} $$ s = 13 TeV in the forward region is presented, using pp collision data collected by the LHCb detector, corresponding to an integrated luminosity of 5.1 fb − 1 . The production cross-section is measured using Z → μ + μ − events within the fiducial region defined as pseudorapidity 2 . 0 < η < 4 . 5 and transverse momentum p T > 20 GeV /c for both muons and dimuon invariant mass 60 < M μμ < 120 GeV /c 2 . The integrated cross-section is determined to be $$ \sigma \left(Z\to {\mu}^{+}{\mu}^{-}\right)=196.4\pm 0.2\pm 1.6\pm 3.9\ \mathrm{pb}, $$ σ Z → μ + μ − = 196.4 ± 0.2 ± 1.6 ± 3.9 pb , where the first uncertainty is statistical, the second is systematic, and the third is due to the luminosity determination. The measured results are in agreement with theoretical predictions within uncertainties.
    Free, publicly-accessible full text available July 1, 2023
  6. A bstract Coherent production of J/ψ mesons is studied in ultraperipheral lead-lead collisions at a nucleon-nucleon centre-of-mass energy of 5 TeV, using a data sample collected by the LHCb experiment corresponding to an integrated luminosity of about 10 μb −1 . The J/ψ mesons are reconstructed in the dimuon final state and are required to have transverse momentum below 1 GeV. The cross-section within the rapidity range of 2 . 0 < y < 4 . 5 is measured to be 4 . 45 ± 0 . 24 ± 0 . 18 ± 0 . 58 mb, where the first uncertainty is statistical, the second systematic and the third originates from the luminosity determination. The cross-section is also measured in J/ψ rapidity intervals. The results are compared to predictions from phenomenological models.
    Free, publicly-accessible full text available July 1, 2023
  7. Free, publicly-accessible full text available June 1, 2023