Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

ABSTRACT We search for the signature of cosmological shocks in stacked gas pressure profiles of galaxy clusters using data from the South Pole Telescope (SPT). Specifically, we stack the latest Comptony maps from the 2500 deg2 SPTSZ survey on the locations of clusters identified in that same data set. The sample contains 516 clusters with mean mass $\langle M_{\rm 200m}\rangle = 10^{14.9} \, {\rm M}_\odot$ and redshift 〈z〉 = 0.55. We analyse in parallel a set of zoomin hydrodynamical simulations from the three hundred project. The SPTSZ data show two features: (i) a pressure deficit at R/R200m = 1.08 ± 0.09, measured at 3.1σ significancemore »Free, publiclyaccessible full text available June 21, 2023

Abstract We show the improvement to cosmological constraints from galaxy cluster surveys with the addition of cosmic microwave background (CMB)cluster lensing data. We explore the cosmological implications of adding mass information from the 3.1 σ detection of gravitational lensing of the CMB by galaxy clusters to the Sunyaev–Zel’dovich (SZ) selected galaxy cluster sample from the 2500 deg 2 SPTSZ survey and targeted optical and Xray followup data. In the ΛCDM model, the combination of the cluster sample with the Planck power spectrum measurements prefers σ 8 Ω m / 0.3 0.5 = 0.831 ± 0.020 . Adding the cluster datamore »Free, publiclyaccessible full text available June 1, 2023

Optimal Cosmic Microwave Background Lensing Reconstruction and Parameter Estimation with SPTpol DataAbstract We perform the first simultaneous Bayesian parameter inference and optimal reconstruction of the gravitational lensing of the cosmic microwave background (CMB), using 100 deg 2 of polarization observations from the SPTpol receiver on the South Pole Telescope. These data reach noise levels as low as 5.8 μ K arcmin in polarization, which are low enough that the typically used quadratic estimator (QE) technique for analyzing CMB lensing is significantly suboptimal. Conversely, the Bayesian procedure extracts all lensing information from the data and is optimal at any noise level. We infer the amplitude of the gravitational lensing potential to bemore »Free, publiclyaccessible full text available December 1, 2022

Free, publiclyaccessible full text available October 1, 2022