skip to main content

Search for: All records

Creators/Authors contains: "de Lima, Thomas Ferreira"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Deep neural networks (DNNs) consist of layers of neurons interconnected by synaptic weights. A high bit-precision in weights is generally required to guarantee high accuracy in many applications. Minimizing error accumulation between layers is also essential when building large-scale networks. Recent demonstrations of photonic neural networks are limited in bit-precision due to cross talk and the high sensitivity of optical components (e.g., resonators). Here, we experimentally demonstrate a record-high precision of 9 bits with a dithering control scheme for photonic synapses. We then numerically simulated the impact with increased synaptic precision on a wireless signal classification application. This work could help realize the potential of photonic neural networks for many practical, real-world tasks.

  2. Artificial intelligence and neuromorphic computing driven by neural networks has enabled many applications. Software implementations of neural networks on electronic platforms are limited in speed and energy efficiency. Neuromorphic photonics aims to build processors in which optical hardware mimic neural networks in the brain.
  3. Integration of active electronics into photonic systems is necessary for large-scale photonic integration. While heterogeneous integration leverages high-performance electronics, a monolithic scheme can coexist by aiding the electronic processing, improving overall efficiency. We report a lateral bipolar junction transistor on a commercial silicon photonics foundry process. We achieved a DC current gain of 10 with a Darlington configuration, and using measured S-parameters for a single BJT, the available AC gain was at least 3dB for signal frequencies up to 1.1 GHz. Our single BJT demonstrated a transimpedance of 3.2mS/μm, which is about 70 times better than existing literature.

  4. Independent component analysis (ICA) is a general-purpose technique for analyzing multi-dimensional data to reveal the underlying hidden factors that are maximally independent from each other. We report the first photonic ICA on mixtures of unknown signals by employing an on-chip microring (MRR) weight bank. The MRR weight bank performs so-called weighted addition (i.e., multiply-accumulate) operations on the received mixtures, and outputs a single reduced-dimensional representation of the signal of interest. We propose a novel ICA algorithm to recover independent components solely based on the statistical information of the weighted addition output, while remaining blind to not only the original sources but also the waveform information of the mixtures. We investigate both channel separability and near-far problems, and our two-channel photonic ICA experiment demonstrates our scheme holds comparable performance with the conventional software-based ICA method. Our numerical simulation validates the fidelity of the proposed approach, and studies noise effects to identify the operating regime of our method. The proposed technique could open new domains for future research in blind source separation, microwave photonics, and on-chip information processing.