skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "de Maissin, Henri"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The feasibility of Carbon‐13 Radiofrequency (RF) Amplification by Stimulated Emission of Radiation (C‐13 RASER) is demonstrated on a bolus of liquid hyperpolarized ethyl [1‐13C]acetate. Hyperpolarized ethyl [1‐13C]acetate was prepared via pairwise addition of parahydrogen to vinyl [1‐13C]acetate and polarization transfer from nascent parahydrogen‐derived protons to the carbon‐13 nucleus via magnetic field cycling yielding C‐13 nuclear spin polarization of approximately 6 %. RASER signals were detected from samples with concentration ranging from 0.12 to 1 M concentration using a non‐cryogenic 1.4T NMR spectrometer equipped with a radio‐frequency detection coil with a quality factor (Q) of 32 without any modifications. C‐13 RASER signals were observed for several minutes on a single bolus of hyperpolarized substrate to achieve 21 mHz NMR linewidths. The feasibility of creating long‐lasting C‐13 RASER on biomolecular carriers opens a wide range of new opportunities for the rapidly expanding field of C‐13 magnetic resonance hyperpolarization. 
    more » « less
  2. Abstract Metabolic magnetic resonance imaging (MRI) using hyperpolarized (HP) pyruvate is becoming a non‐invasive technique for diagnosing, staging, and monitoring response to treatment in cancer and other diseases. The clinically established method for producing HP pyruvate, dissolution dynamic nuclear polarization, however, is rather complex and slow. Signal Amplification By Reversible Exchange (SABRE) is an ultra‐fast and low‐cost method based on fast chemical exchange. Here, for the first time, we demonstrate not only in vivo utility, but also metabolic MRI with SABRE. We present a novel routine to produce aqueous HP [1‐13C]pyruvate‐d3for injection in 6 minutes. The injected solution was sterile, non‐toxic, pH neutral and contained ≈30 mM [1‐13C]pyruvate‐d3polarized to ≈11 % (residual 250 mM methanol and 20 μM catalyst). It was obtained by rapid solvent evaporation and metal filtering, which we detail in this manuscript. This achievement makes HP pyruvate MRI available to a wide biomedical community for fast metabolic imaging of living organisms. 
    more » « less