skip to main content


Search for: All records

Creators/Authors contains: "de Szoeke, Simon P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Indian Ocean is a frequent site for the initiation of the Madden–Julian oscillation (MJO). The evolution of convection during MJO initiation is intimately linked to the subcloud atmospheric mixed layer (ML). Much of the air entering developing cumulus clouds passes through the cloud base; hence, the properties of the ML are critical in determining the nature of cloud development. The properties and depth of the ML are influenced by horizontal advection, precipitation-driven cold pools, and vertical motion. To address ML behavior during the initiation of the MJO, data from the 2011/12 Dynamics of the MJO Experiment (DYNAMO) are utilized. Observations from the research vesselRevelleare used to document the ML and its modification during the time leading up to the onset phase of the October MJO. The mixed layer depth increased from ∼500 to ∼700 m during the 1–12 October suppressed period, allowing a greater proportion of boundary layer thermals to reach the lifting condensation level and hence promote cloud growth. The ML heat budget defines an equilibrium mixed layer depth that accurately diagnoses the mixed layer depth over the DYNAMO convectively suppressed period, provided that horizontal advection is included. The advection at theRevelleis significantly influenced by low-level convective outflows from the southern ITCZ. The findings also demonstrate a connection between cirrus clouds and their remote impact on ML depth and convective development through a reduction in the ML radiative cooling rate. The emergent behavior of the equilibrium mixed layer has implications for simulating the MJO with models with parameterized cloud and turbulent-scale motions.

     
    more » « less
  2. Sub-cloud rain evaporation in the trade wind region significantly influences the boundary layer mass and energy budgets. Parameterizing it is, however, difficult due to the sparsity of well-resolved rain observations and the challenges of sampling short-lived marine cumulus clouds. In this study, sub-cloud rain evaporation is analyzed using a steady-state, one-dimensional model that simulates changes in drop sizes, relative humidity, and rain isotopic composition. The model is initialized with relative humidity, raindrop size distributions, and water vapor isotope ratios (e.g., δDv, δ18Ov) sampled by the NOAA P3 aircraft during the Atlantic Tradewind Ocean–Atmosphere Mesoscale Interaction Campaign (ATOMIC), which was part of the larger EUREC4A (ElUcidating the RolE of Clouds–Circulation Coupling in ClimAte) field program. The modeled surface precipitation isotope ratios closely match the observations from EUREC4A ground-based and ship-based platforms, lending credibility to our model. The model suggests that 63 % of the rain mass evaporates in the sub-cloud layer across 22 P3 cases. The vertical distribution of the evaporated rain flux is top heavy for a narrow (σ) raindrop size distribution (RSD) centered over a small geometric mean diameter (Dg) at the cloud base. A top-heavy profile has a higher rain-evaporated fraction (REF) and larger changes in the rain deuterium excess (d=δD-8×δ18O) between the cloud base and the surface than a bottom-heavy profile, which results from a wider RSD with larger Dg. The modeled REF and change in d are also more strongly influenced by cloud base Dg and σ rather than the concentration of raindrops. The model results are accurate as long as the variations in the relative humidity conditions are accounted for. Relative humidity alone, however, is a poor indicator of sub-cloud rain evaporation. Overall, our analysis indicates the intricate dependence of sub-cloud rain evaporation on both thermodynamic and microphysical processes in the trade wind region. 
    more » « less
  3. Abstract. In early 2020, an international team set out to investigatetrade-wind cumulus clouds and their coupling to the large-scale circulationthrough the field campaign EUREC4A: ElUcidating the RolE ofClouds-Circulation Coupling in ClimAte. Focused on the western tropicalAtlantic near Barbados, EUREC4A deployed a number of innovativeobservational strategies, including a large network of water isotopicmeasurements collectively known as EUREC4A-iso, to study the tropicalshallow convective environment. The goal of the isotopic measurements was toelucidate processes that regulate the hydroclimate state – for example, byidentifying moisture sources, quantifying mixing between atmospheric layers,characterizing the microphysics that influence the formation and persistenceof clouds and precipitation, and providing an extra constraint in theevaluation of numerical simulations. During the field experiment,researchers deployed seven water vapor isotopic analyzers on two aircraft,on three ships, and at the Barbados Cloud Observatory (BCO). Precipitationwas collected for isotopic analysis at the BCO and from aboard four ships.In addition, three ships collected seawater for isotopic analysis. All told,the in situ data span the period 5 January–22 February 2020 andcover the approximate area 6 to 16∘ N and 50 to 60∘ W,with water vapor isotope ratios measured from a few meters above sea levelto the mid-free troposphere and seawater samples spanning the ocean surfaceto several kilometers depth. This paper describes the full EUREC4A isotopic in situ data collection– providing extensive information about sampling strategies and datauncertainties – and also guides readers to complementary remotely sensedwater vapor isotope ratios. All field data have been made publicly availableeven if they are affected by known biases, as is the case for high-altitudeaircraft measurements, one of the two BCO ground-based water vapor timeseries, and select rain and seawater samples from the ships. Publication ofthese data reflects a desire to promote dialogue around improving waterisotope measurement strategies for the future. The remaining, high-qualitydata create unprecedented opportunities to close water isotopic budgets andevaluate water fluxes and their influence on cloudiness in the trade-windenvironment. The full list of dataset DOIs and notes on data quality flagsare provided in Table 3 of Sect. 5 (“Data availability”).

     
    more » « less
  4. null (Ed.)
    Abstract The Propagation of Intraseasonal Tropical Oscillations (PISTON) experiment conducted a field campaign inAugust-October 2018. The R/V Thomas G. Thompson made two cruises in thewestern North Pacific region north of Palau and east of the Philippines. Using select field observations and global observational and reanalysis data sets, this study describes the large-scale state and evolution of the atmosphere and ocean during these cruises. Intraseasonal variability was weak during the field program, except for a period of suppressed convection in October. Tropical cyclone activity, on the other hand, was strong. Variability at the ship location was characterized by periods of low-level easterly atmospheric flow with embedded westward propagating synoptic-scale atmospheric disturbances, punctuated by periods of strong low-level westerly winds that were both connected to the Asian monsoon westerlies and associated with tropical cyclones. In the most dramatic case, westerlies persisted for days during and after tropical cyclone Jebi had passed to the north of the ship. In these periods, the sea surface temperature was reduced by a couple of degrees by both wind mixing and net surface heat fluxes that were strongly (~200 Wm −2 ) out of the ocean, due to both large latent heat flux and cloud shading associated with widespread deep convection. Underway conductivity-temperature transects showed dramatic cooling and deepening of the ocean mixed layer and erosion of the barrier layer after the passage of Typhoon Mangkhut due to entrainment of cooler water from below. Strong zonal currents observed over at least the upper 400 meters were likely related to the generation and propagation of near-inertial currents. 
    more » « less
  5. Abstract

    Sunlight warms sea surface temperature (SST) under calm winds, increasing atmospheric surface buoyancy flux, turbulence, and mixed layer (ML) depth in the afternoon. The diurnal range of SST exceeded 1°C for 24% of days in the central tropical Indian Ocean during the Dynamics of the Madden Julian Oscillation experiment in October‐December 2011. Doppler lidar shows enhancement of the strength and height of convective turbulence in the atmospheric ML over warm SST in the afternoon. The turbulent kinetic energy (TKE) dissipation rate of the marine atmospheric ML scales with surface buoyancy flux like previous measurements of convective MLs. The time of enhanced ML TKE dissipation rate is out of phase with the buoyancy flux generated by nocturnal net radiative cooling of the atmosphere. Diurnal atmospheric convective turbulence over the ocean mixes moisture from the ocean to the lifting condensation level and forms afternoon clouds.

     
    more » « less
  6. The Atlantic Tradewind Ocean-Atmosphere Mesoscale Interaction Campaign (ATOMIC) took place from 7 January to 11 July 2020 in the tropical North Atlantic between the eastern edge of Barbados and 51∘ W, the longitude of the Northwest Tropical Atlantic Station (NTAS) mooring. Measurements were made to gather information on shallow atmospheric convection, the effects of aerosols and clouds on the ocean surface energy budget, and mesoscale oceanic processes. Multiple platforms were deployed during ATOMIC including the NOAA RV Ronald H. Brown (RHB) (7 January to 13 February) and WP-3D Orion (P-3) aircraft (17 January to 10 February), the University of Colorado's Robust Autonomous Aerial Vehicle-Endurant Nimble (RAAVEN) uncrewed aerial system (UAS) (24 January to 15 February), NOAA- and NASA-sponsored Saildrones (12 January to 11 July), and Surface Velocity Program Salinity (SVPS) surface ocean drifters (23 January to 29 April). The RV Ronald H. Brown conducted in situ and remote sensing measurements of oceanic and atmospheric properties with an emphasis on mesoscale oceanic–atmospheric coupling and aerosol–cloud interactions. In addition, the ship served as a launching pad for Wave Gliders, Surface Wave Instrument Floats with Tracking (SWIFTs), and radiosondes. Details of measurements made from the RV Ronald H. Brown, ship-deployed assets, and other platforms closely coordinated with the ship during ATOMIC are provided here. These platforms include Saildrone 1064 and the RAAVEN UAS as well as the Barbados Cloud Observatory (BCO) and Barbados Atmospheric Chemistry Observatory (BACO). Inter-platform comparisons are presented to assess consistency in the data sets. Data sets from the RV Ronald H. Brown and deployed assets have been quality controlled and are publicly available at NOAA's National Centers for Environmental Information (NCEI) data archive (https://www.ncei.noaa.gov/archive/accession/ATOMIC-2020, last access: 2 April 2021). Point-of-contact information and links to individual data sets with digital object identifiers (DOIs) are provided herein. 
    more » « less