skip to main content

Search for: All records

Creators/Authors contains: "de los Reyes, Mithi A. C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Measuring the relation between star formation and galactic winds is observationally difficult. In this work we make an indirect measurement of the mass-loading factor (the ratio between the mass outflow rate and star formation rate) in low-mass galaxies using a differential approach to modeling the low-redshift evolution of the star-forming main sequence and mass–metallicity relation. We use Satellites Around Galactic Analogs (SAGA) background galaxies, i.e., spectra observed by the SAGA Survey that are not associated with the main SAGA host galaxies, to construct a sample of 11,925 spectroscopically confirmed low-mass galaxies from 0.01 ≲z≤ 0.21 and measure auroral line metallicities for 120 galaxies. The crux of the method is to use the lowest-redshift galaxies as the boundary condition of our model, and to infer a mass-loading factor for the sample by comparing the expected evolution of the low-redshift reference sample in stellar mass, gas-phase metallicity, and star formation rate against the observed properties of the sample at higher redshift. We infer a mass-loading factor ofηm=0.920.74+1.76, which is in line with direct measurements of the mass-loading factor from the literature despite the drastically different sets of assumptions needed for each approach. While our estimate of the mass-loading factor is in good agreement with recent galaxy simulations that focus on resolving the dynamics of the interstellar medium, it is smaller by over an order of magnitude than the mass-loading factor produced by many contemporary cosmological simulations.

    more » « less
  2. Abstract

    Nyx is a nearby, prograde, and high-eccentricity stellar stream physically contained in the thick disk, but its origin is unknown. Nyx could be the remnant of a disrupted dwarf galaxy, in which case the associated dark matter substructure could affect terrestrial dark matter direct-detection experiments. Alternatively, Nyx could be a signature of the Milky Way’s disk formation and evolution. To determine the origin of Nyx, we obtained high-resolution spectroscopy of 34 Nyx stars using Keck/HIRES and Magellan/MIKE. A differential chemical abundance analysis shows that most Nyx stars reside in a metal-rich ([Fe/H] > −1) high-αcomponent that is chemically indistinguishable from the thick disk. This rules out the originally suggested scenario that Nyx is the remnant of a single massive dwarf galaxy merger. However, we also identify 5 substantially more metal-poor stars ([Fe/H] ∼ −2.0) whose chemical abundances are similar to those of the metal-weak thick disk. It remains unclear how stars that are chemically identical to the thick disk can be on such prograde, high-eccentricity orbits. We suggest two most likely scenarios: that Nyx is the result of an early minor dwarf galaxy merger, or that it is a record of the early spin-up of the Milky Way disk—although neither perfectly reproduces the chemodynamic observations. The most likely formation scenarios suggest that future spectroscopic surveys should find Nyx-like structures outside of the solar neighborhood.

    more » « less
  3. Abstract

    Dwarf galaxies located in extremely underdense cosmic voids are excellent test beds for disentangling the effects of large-scale environments on galaxy formation and evolution. We present the first results of the Dwarfs in Void Environments Survey, which has obtained integral field spectroscopy for low-mass galaxies (M= 107–109M) located inside (N= 21) and outside (N= 9) cosmic voids using the Keck Cosmic Web Imager. Using measurements of stellar line-of-sight rotational velocityvrotand velocity dispersionσ, we test the tidal stirring hypothesis, which posits that dwarf spheroidal galaxies are formed through tidal interactions with more massive host galaxies. We measure low values ofvrot/σ≲ 2 for our sample of isolated dwarf galaxies, and we find no trend betweenvrot/σand the distance from a massive galaxydLout todL10Mpc. These suggest that dwarf galaxies can become dispersion-supported, “puffy” systems even in the absence of environmental effects like tidal interactions. We also find indications of an upward trend betweenvrot/σand galaxy stellar mass, perhaps implying that stellar disk formation depends on mass rather than environment. Although some of our conclusions may be slightly modified by systematic effects, our main result still holds: that isolated low-mass galaxies may form and remain as puffy systems rather than the dynamically cold disks predicted by classical galaxy formation theory.

    more » « less
  4. Abstract

    We demonstrate that using up to seven stellar abundance ratios can place observational constraints on the star formation histories (SFHs) of Local Group dSphs, using Sculptor dSph as a test case. We use a one-zone chemical evolution model to fit the overall abundance patterns ofαelements (which probe the core-collapse supernovae that occur shortly after star formation),s-process elements (which probe AGB nucleosynthesis at intermediate delay times), and iron-peak elements (which probe delayed Type Ia supernovae). Our best-fit model indicates that Sculptor dSph has an ancient SFH, consistent with previous estimates from deep photometry. However, we derive a total star formation duration of ∼0.9 Gyr, which is shorter than photometrically derived SFHs. We explore the effect of various model assumptions on our measurement and find that modifications to these assumptions still produce relatively short SFHs of duration ≲1.4 Gyr. Our model is also able to compare sets of predicted nucleosynthetic yields for supernovae and AGB stars, and can provide insight into the nucleosynthesis of individual elements in Sculptor dSph. We find that observed [Mn/Fe] and [Ni/Fe] trends are most consistent with sub-MChType Ia supernova models, and that a combination of “prompt” (delay times similar to core-collapse supernovae) and “delayed” (minimum delay times ≳50 Myr)r-process events may be required to reproduce observed [Ba/Mg] and [Eu/Mg] trends.

    more » « less