skip to main content


Search for: All records

Creators/Authors contains: "deBoer, R. J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2025
  2. Free, publicly-accessible full text available August 1, 2025
  3. Free, publicly-accessible full text available July 1, 2025
  4. Free, publicly-accessible full text available May 15, 2025
  5. Free, publicly-accessible full text available December 1, 2024
  6. Abstract The interplay and correlation between the $$^{22}$$ 22 Ne $$(\alpha ,\gamma )^{26}$$ ( α , γ ) 26 Mg and the competing $$^{22}$$ 22 Ne $$(\alpha ,n)^{25}$$ ( α , n ) 25 Mg reaction plays an important role for the interpretation of the $$^{22}$$ 22 Ne $$(\alpha ,n)^{25}$$ ( α , n ) 25 Mg reaction as a neutron source in the s - and n -processes. This paper provides a summary and new data on the $$\alpha $$ α -cluster and single-particle structure of the compound nucleus $$^{26}$$ 26 Mg and the impact on the reaction rate of these two competing processes in stellar helium burning environments. 
    more » « less
  7. Abstract

    The20Ne(α,p)23Na reaction rate is important in determining the final abundances of various nuclei produced in type Ia supernovae. Previously, the ground state cross section was calculated from time reversal reaction experiments using detailed balance. The reaction rates extracted from these studies do not consider contributions from the population of excited states, and therefore, are only estimates. A resonance scan, populating both the ground and first excited states, was performed for the20Ne(α,p)23Na reaction, measuring between 2.9 and 5 MeV center of mass energies at the Nuclear Science Lab at the University of Notre Dame. Data analysis is underway and preliminary results show substantial contribution from the excited state reaction.

     
    more » « less
  8. Free, publicly-accessible full text available February 1, 2025