- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Anglés-Alcázar, Daniel (1)
-
Castro, Tiago (1)
-
Dolag, Klaus (1)
-
Garrison, Lehman H (1)
-
Genel, Shy (1)
-
Hernquist, Lars (1)
-
Hernández-Martínez, Elena (1)
-
Kulkarni, Mihir (1)
-
Lovell, Christopher C (1)
-
Ni, Yueying (1)
-
Shao, Helen (1)
-
Steinwandel, Ulrich P (1)
-
Teyssier, Romain (1)
-
Villaescusa-Navarro, Francisco (1)
-
Visbal, Eli (1)
-
Vogelsberger, Mark (1)
-
de_Santi, Natalí_S M (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We discover analytic equations that can infer the value of Ωmfrom the positions and velocity moduli of halo and galaxy catalogs. The equations are derived by combining a tailored graph neural network (GNN) architecture with symbolic regression. We first train the GNN on dark matter halos from GadgetN-body simulations to perform field-level likelihood-free inference, and show that our model can infer Ωmwith ∼6% accuracy from halo catalogs of thousands ofN-body simulations run with six different codes: Abacus, CUBEP3M, Gadget, Enzo, PKDGrav3, and Ramses. By applying symbolic regression to the different parts comprising the GNN, we derive equations that can predict Ωmfrom halo catalogs of simulations run with all of the above codes with accuracies similar to those of the GNN. We show that, by tuning a single free parameter, our equations can also infer the value of Ωmfrom galaxy catalogs of thousands of state-of-the-art hydrodynamic simulations of the CAMELS project, each with a different astrophysics model, run with five distinct codes that employ different subgrid physics: IllustrisTNG, SIMBA, Astrid, Magneticum, SWIFT-EAGLE. Furthermore, the equations also perform well when tested on galaxy catalogs from simulations covering a vast region in parameter space that samples variations in 5 cosmological and 23 astrophysical parameters. We speculate that the equations may reflect the existence of a fundamental physics relation between the phase-space distribution of generic tracers and Ωm, one that is not affected by galaxy formation physics down to scales as small as 10h−1kpc.more » « less
An official website of the United States government
