skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "di_Bernardo, Mario"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Collective motion in human crowds has been understood as a self-organizing phenomenon that is generated from local visual interactions between neighboring pedestrians. To analyze these interactions, we introduce an approach that estimates local influences in observational data on moving human crowds and represents them as spatially-embedded dynamic networks (visual influence networks). We analyzed data from a human “swarm” experiment (N= 10, 16, 20) in which participants were instructed to walk about the tracking area while staying together as a group. We reconstructed the network every 0.5 seconds using Time-Dependent Delayed Correlation (TDDC). Using novel network measures of local and global leadership ('direct influence' and 'branching influence'), we find that both measures strongly depend on an individual’s spatial position within the group, yielding similar but distinctive leadership gradients from the front to the back. There was also a strong linear relationship between individual influence and front-back position in the crowd. The results reveal that influence is concentrated in specific positions in a crowd, a fact that could be exploited by individuals seeking to lead collective crowd motion. 
    more » « less
    Free, publicly-accessible full text available January 30, 2026