skip to main content

Search for: All records

Creators/Authors contains: "van der Schoot, Paul"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We extend a recently proposed kinetic theory of virus capsid assembly based on Model A kinetics and study the dynamics of the interconversion of virus capsids of different sizes triggered by a quench, that is, by sudden changes in the solution conditions. The work is inspired by in vitro experiments on functionalized coat proteins of the plant virus cowpea chlorotic mottle virus, which undergo a reversible transition between two different shell sizes (T = 1 and T = 3) upon changing the acidity and salinity of the solution. We find that the relaxation dynamics are governed by two time scales that, in almost all cases, can be identified as two distinct processes. Initially, the monomers and one of the two types of capsids respond to the quench. Subsequently, the monomer concentration remains essentially constant, and the conversion between the two capsid species completes. In the intermediate stages, a long-lived metastable steady state may present itself, where the thermodynamically less stable species predominate. We conclude that a Model A based relaxational model can reasonably describe the early and intermediate stages of the conversion experiments. However, it fails to provide a good representation of the time evolution of the state of assembly of the coat proteins in the very late stages of equilibration when one of the two species disappears from the solution. It appears that explicitly incorporating the nucleation barriers to assembly and disassembly is crucial for an accurate description of the experimental findings, at least under conditions where these barriers are sufficiently large.

    more » « less
    Free, publicly-accessible full text available August 28, 2024
  2. null (Ed.)
    Carbon nanotubes (CNTs) are stiff, all-carbon macromolecules with diameters as small as one nanometer and few microns long. Solutions of CNTs in chlorosulfonic acid (CSA) follow the phase behavior of rigid rod polymers interacting via a repulsive potential and display a liquid crystalline phase at sufficiently high concentration. Here, we show that small-angle X-ray scattering and polarized light microscopy data can be combined to characterize quantitatively the morphology of liquid crystalline phases formed in CNT solutions at concentrations from 3 to 6.5% by volume. We find that upon increasing their concentration, CNTs self-assemble into a liquid crystalline phase with a pleated texture and with a large inter-particle spacing that could be indicative of a transition to higher-order liquid crystalline phases. We explain how thermal undulations of CNTs can enhance their electrostatic repulsion and increase their effective diameter by an order of magnitude. By calculating the critical concentration, where the mean amplitude of undulation of an unconstrained rod becomes comparable to the rod spacing, we find that thermal undulations start to affect steric forces at concentrations as low as the isotropic cloud point in CNT solutions. 
    more » « less