- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Adibi, Ali (2)
-
Zandehshahvar, Mohammadreza (2)
-
van_Assen, Marly (2)
-
Baird, Grayson L (1)
-
Berkowitz, Eugene_A (1)
-
Davarpanah, Amir_H (1)
-
De_Cecco, Carlo (1)
-
De_Cecco, Carlo N (1)
-
Filev, Peter (1)
-
Gabriel, Roy M (1)
-
Keerthipati, Vikranth (1)
-
Kiarashi, Yashar (1)
-
Kim, Eun (1)
-
Kittisut, Nattakorn (1)
-
Krupinski, Elizabeth A (1)
-
Lee, Scott_J (1)
-
Mullins, Siobhan (1)
-
Muscogiuri, Emanuele (1)
-
Stillman, Arthur_E (1)
-
Tessarin, Giovanni (1)
-
- Filter by Editor
-
-
Anastasio, Mark A (1)
-
Brankov, Jovan G (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Brankov, Jovan G; Anastasio, Mark A (Ed.)Artificial intelligence (AI) tools are designed to improve the efficacy and efficiency of data analysis and interpretation by the human decision maker. However, we know little about the optimal ways to present AI output to providers. This study used radiology image interpretation with AI-based decision support to explore the impact of different forms of AI output on reader performance. Readers included 5 experienced radiologists and 3 radiology residents reporting on a series of COVID chest x-ray images. Four different forms (1 word summarizing diagnoses (normal, mild, moderate, severe), probability graph, heatmap, heatmap plus probability graph) of AI outputs (plus no AI feedback) were evaluated. Results reveal that most decisions regarding presence/absence of COVID without AI were correct and overall remained unchanged across all types of AI outputs. Fewer than 1% of decisions that were changed as a function of seeing the AI output were negative (true positive to false negative or true negative to false positive) regarding presence/absence of COVID; and about 1% were positive (false negative to true positive, false positive to true negative). More complex output formats (e.g., heat map plus a probability graph) tend to increase reading time and the number of scans between the clinical image and the AI outputs as revealed through eyetracking. The key to the success of AI tools in medical imaging will be to incorporate the human into the overall process to optimize and synergize the human-computer dyad, since at least for the foreseeable future, the human is and will be the ultimate decision maker. Our results demonstrate that the form of the AI output is important as it can impact clinical decision making and efficiency.more » « lessFree, publicly-accessible full text available April 10, 2026
-
Zandehshahvar, Mohammadreza; van_Assen, Marly; Kim, Eun; Kiarashi, Yashar; Keerthipati, Vikranth; Tessarin, Giovanni; Muscogiuri, Emanuele; Stillman, Arthur_E; Filev, Peter; Davarpanah, Amir_H; et al (, Journal of Imaging Informatics in Medicine)Abstract In this study, we present a method based on Monte Carlo Dropout (MCD) as Bayesian neural network (BNN) approximation for confidence-aware severity classification of lung diseases in COVID-19 patients using chest X-rays (CXRs). Trained and tested on 1208 CXRs from Hospital 1 in the USA, the model categorizes severity into four levels (i.e., normal, mild, moderate, and severe) based on lung consolidation and opacity. Severity labels, determined by the median consensus of five radiologists, serve as the reference standard. The model’s performance is internally validated against evaluations from an additional radiologist and two residents that were excluded from the median. The performance of the model is further evaluated on additional internal and external datasets comprising 2200 CXRs from the same hospital and 1300 CXRs from Hospital 2 in South Korea. The model achieves an average area under the curve (AUC) of 0.94 ± 0.01 across all classes in the primary dataset, surpassing human readers in each severity class and achieves a higher Kendall correlation coefficient (KCC) of 0.80 ± 0.03. The performance of the model is consistent across varied datasets, highlighting its generalization. A key aspect of the model is its predictive uncertainty (PU), which is inversely related to the level of agreement among radiologists, particularly in mild and moderate cases. The study concludes that the model outperforms human readers in severity assessment and maintains consistent accuracy across diverse datasets. Its ability to provide confidence measures in predictions is pivotal for potential clinical use, underscoring the BNN’s role in enhancing diagnostic precision in lung disease analysis through CXR.more » « less
An official website of the United States government
