skip to main content


Search for: All records

Creators/Authors contains: "Abbott, Mark B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2024
  2. Uncertainty about the influence of anthropogenic radiative forcing on the position and strength of convective rainfall in the Intertropical Convergence Zone (ITCZ) inhibits our ability to project future tropical hydroclimate change in a warmer world. Paleoclimatic and modeling data inform on the timescales and mechanisms of ITCZ variability; yet a comprehensive, long-term perspective remains elusive. Here, we quantify the evolution of neotropical hydroclimate over the preindustrial past millennium (850 to 1850 CE) using a synthesis of 48 paleo-records, accounting for uncertainties in paleo-archive age models. We show that an interhemispheric pattern of precipitation antiphasing occurred on multicentury timescales in response to changes in natural radiative forcing. The conventionally defined “Little Ice Age” (1450 to 1850 CE) was marked by a clear shift toward wetter conditions in the southern neotropics and a less distinct and spatiotemporally complex transition toward drier conditions in the northern neotropics. This pattern of hydroclimatic change is consistent with results from climate model simulations indicating that a relative cooling of the Northern Hemisphere caused a southward shift in the thermal equator across the Atlantic basin and a southerly displacement of the ITCZ in the tropical Americas, with volcanic forcing as the principal driver. These findings are at odds with proxy-based reconstructions of ITCZ behavior in the western Pacific basin, where changes in ITCZ width and intensity, rather than mean position, appear to have driven hydroclimate transitions over the last millennium. This reinforces the idea that ITCZ responses to external forcing are region specific, complicating projections of the tropical precipitation response to global warming. 
    more » « less
  3. null (Ed.)
  4. Abstract

    Drought has long been suspected as playing an important role in the abandonment of pre-Columbian Native American settlements across the midcontinental United States between 1350 and 1450 CE. However, high-resolution paleoclimatic reconstructions reflecting local effective moisture (the ratio of precipitation to evaporation) that are located in proximity to Mississippi period (1050–1450 CE) population centers are lacking. Here, we present a 1600-year-long decadally resolved oxygen isotope (δ18O) record from Horseshoe Lake (Collinsville, IL), an evaporatively influenced oxbow lake that is centrally located within the largest and mostly densely populated series of Mississippian settlements known as Greater Cahokia. A shift to higher δ18O in the Horseshoe Lake sediment record from 1200 to 1400 CE indicates that strongly evaporative conditions (i.e., low effective moisture) were persistent during the leadup to Cahokia’s abandonment. These results support the hypothesis that climate, and drought specifically, strongly impacted agriculturally based pre-Columbian Native American cultures in the midcontinental US and highlights the susceptibility of this region, presently a global food production center, to hydroclimate extremes.

     
    more » « less
  5. ABSTRACT Accelerator mass spectrometry (AMS) dating of pollen concentrates is often used in lake sediment records where large, terrestrial plant remains are unavailable. Ages produced from chemically concentrated pollen as well as manually picked Pinaceae grains in Yellowstone Lake (Wyoming) sediments were consistently 1700–4300 cal years older than ages established by terrestrial plant remains, tephrochronology, and the age of the sediment-water interface. Previous studies have successfully utilized the same laboratory space and methods, suggesting the source of old-carbon contamination is specific to these samples. Manually picking pollen grains precludes admixture of non-pollen materials. Furthermore, no clear source of old pollen grains occurs on the deglaciated landscape, making reworking of old pollen grains unlikely. High volumes of CO 2 are degassed in the Yellowstone Caldera, potentially introducing old carbon to pollen. While uptake of old CO 2 through photosynthesis is minor (F 14 C approximately 0.99), old-carbon contamination may still take place in the water column or in surficial lake sediments. It remains unclear, however, what mechanism allows for the erroneous ages of highly refractory pollen grains while terrestrial plant remains were unaffected. In the absence of a satisfactory explanation for erroneously old radiocarbon ages from pollen concentrates, we propose steps for further study. 
    more » « less