skip to main content


Search for: All records

Creators/Authors contains: "Aguilar, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present a measurement of the Hubble ConstantH0using the gravitational wave event GW190412, an asymmetric binary black hole merger detected by LIGO/Virgo, as a dark standard siren. This event does not have an electromagnetic counterpart, so we use the statistical standard siren method and marginalize over potential host galaxies from the Dark Energy Spectroscopic Instrument (DESI) survey. GW190412 is well-localized to 12 deg2(90% credible interval), so it is promising for a dark siren analysis. The dark siren value forH0=85.433.9+29.1km s−1 Mpc−1, with a posterior shape that is consistent with redshift overdensities. When combined with the bright standard siren measurement from GW170817 we recoverH0=77.965.03+23.0km s−1 Mpc−1, consistent with both early and late-time Universe measurements ofH0. This work represents the first standard siren analysis performed with DESI data, and includes the most complete spectroscopic sample used in a dark siren analysis to date.

     
    more » « less
  2. ABSTRACT

    The full-shape correlations of the Lyman alpha (Ly α) forest contain a wealth of cosmological information through the Alcock–Paczyński effect. However, these measurements are challenging to model without robustly testing and verifying the theoretical framework used for analysing them. Here, we leverage the accuracy and volume of the N-body simulation suite AbacusSummit to generate high-resolution Ly α skewers and quasi-stellar object (QSO) catalogues. One of the main goals of our mocks is to aid in the full-shape Ly α analysis planned by the Dark Energy Spectroscopic Instrument (DESI) team. We provide optical depth skewers for six of the fiducial cosmology base-resolution simulations ($L_{\rm box} = 2\, h^{-1}\, {\rm Gpc}$, N = 69123) at z = 2.5. We adopt a simple recipe based on the Fluctuating Gunn–Peterson Approximation (FGPA) for constructing these skewers from the matter density in an N-body simulation and calibrate it against the 1D and 3D Ly α power spectra extracted from the hydrodynamical simulation IllustrisTNG (TNG; $L_{\rm box} = 205\, h^{-1}\, {\rm Mpc}$, N = 25003). As an important application, we study the non-linear broadening of the baryon acoustic oscillation (BAO) peak and show the cross-correlation between DESI-like QSOs and our Ly α forest skewers. We find differences on small scales between the Kaiser approximation prediction and our mock measurements of the Ly α × QSO cross-correlation, which would be important to account for in upcoming analyses. The AbacusSummit Ly α forest mocks open up the possibility for improved modelling of cross-correlations between Ly α and cosmic microwave background (CMB) lensing and Ly α and QSOs, and for forecasts of the 3-point Ly α correlation function. Our catalogues and skewers are publicly available on Globus via the National Energy Research Scientific Computing Center (NERSC) (full link under the section ‘Data Availability’).

     
    more » « less
  3. ABSTRACT

    The joint analysis of different cosmological probes, such as galaxy clustering and weak lensing, can potentially yield invaluable insights into the nature of the primordial Universe, dark energy, and dark matter. However, the development of high-fidelity theoretical models is a necessary stepping stone. Here, we present public high-resolution weak lensing maps on the light-cone, generated using the N-body simulation suite abacussummit, and accompanying weak lensing mock catalogues, tuned to the Early Data Release small-scale clustering measurements of the Dark Energy Spectroscopic Instrument. Available in this release are maps of the cosmic shear, deflection angle, and convergence fields at source redshifts ranging from z = 0.15 to 2.45 as well as cosmic microwave background convergence maps for each of the 25 base-resolution simulations ($L_{\rm box} = 2000\, h^{-1}\, {\rm Mpc}$ and Npart = 69123) as well as for the two huge simulations ($L_{\rm box} = 7500\, h^{-1}\, {\rm Mpc}$ and Npart = 86403) at the fiducial abacussummit cosmology. The pixel resolution of each map is 0.21 arcmin, corresponding to a healpix Nside of 16 384. The sky coverage of the base simulations is an octant until z ≈ 0.8 (decreasing to about 1800 deg2 at z ≈ 2.4), whereas the huge simulations offer full-sky coverage until z ≈ 2.2. Mock lensing source catalogues are sampled matching the ensemble properties of the Kilo-Degree Survey, Dark Energy Survey, and Hyper Suprime-Cam data sets. The mock catalogues are validated against theoretical predictions for various clustering and lensing statistics, such as correlation multipoles, galaxy–shear, and shear–shear, showing excellent agreement. All products can be downloaded via a Globus endpoint (see Data Availability section).

     
    more » « less
  4. ABSTRACT

    The 1D power spectrum P1D of the Ly α forest provides important information about cosmological and astrophysical parameters, including constraints on warm dark matter models, the sum of the masses of the three neutrino species, and the thermal state of the intergalactic medium. We present the first measurement of P1D with the quadratic maximum likelihood estimator (QMLE) from the Dark Energy Spectroscopic Instrument (DESI) survey early data sample. This early sample of 54 600 quasars is already comparable in size to the largest previous studies, and we conduct a thorough investigation of numerous instrumental and analysis systematic errors to evaluate their impact on DESI data with QMLE. We demonstrate the excellent performance of the spectroscopic pipeline noise estimation and the impressive accuracy of the spectrograph resolution matrix with 2D image simulations of raw DESI images that we processed with the DESI spectroscopic pipeline. We also study metal line contamination and noise calibration systematics with quasar spectra on the red side of the Ly α emission line. In a companion paper, we present a similar analysis based on the Fast Fourier Transform estimate of the power spectrum. We conclude with a comparison of these two approaches and discuss the key sources of systematic error that we need to address with the upcoming DESI Year 1 analysis.

     
    more » « less
  5. ABSTRACT

    We present the first eight months of data from our secondary target programme within the ongoing Dark Energy Spectroscopic Instrument (DESI) survey. Our programme uses a mid-infrared and optical colour selection to preferentially target dust-reddened quasi-stellar objects (QSOs) that would have otherwise been missed by the nominal DESI QSO selection. So far, we have obtained optical spectra for 3038 candidates, of which ∼70 per cent of the high-quality objects (those with robust redshifts) are visually confirmed to be Type 1 QSOs, consistent with the expected fraction from the main DESI QSO survey. By fitting a dust-reddened blue QSO composite to the QSO spectra, we find they are well-fitted by a normal QSO with up to AV ∼ 4 mag of line-of-sight dust extinction. Utilizing radio data from the LOFAR Two-metre Sky Survey (LoTSS) DR2, we identify a striking positive relationship between the amount of line-of-sight dust extinction towards a QSO and the radio detection fraction, that is not driven by radio-loud systems, redshift and/or luminosity effects. This demonstrates an intrinsic connection between dust reddening and the production of radio emission in QSOs, whereby the radio emission is most likely due to low-powered jets or winds/outflows causing shocks in a dusty environment. On the basis of this evidence, we suggest that red QSOs may represent a transitional ‘blow-out’ phase in the evolution of QSOs, where winds and outflows evacuate the dust and gas to reveal an unobscured blue QSO.

     
    more » « less
  6. Abstract

    The Dark Energy Spectroscopic Instrument, consisting of 5020 robotic fiber positioners and associated systems on the Mayall telescope at Kitt Peak, Arizona, is carrying out a survey to measure the spectra of 40 million galaxies and quasars and produce the largest 3D map of the universe to date. The primary science goal is to use baryon acoustic oscillations to measure the expansion history of the universe and the time evolution of dark energy. A key function of the online control system is to position each fiber on a particular target in the focal plane with an accuracy of 11μm rms 2D. This paper describes the set of software programs used to perform this function along with the methods used to validate their performance.

     
    more » « less
  7. Abstract

    We introduce the DESI LOW-ZSecondary Target Survey, which combines the wide-area capabilities of the Dark Energy Spectroscopic Instrument (DESI) with an efficient, low-redshift target selection method. Our selection consists of a set of color and surface brightness cuts, combined with modern machine-learning methods, to target low-redshift dwarf galaxies (z< 0.03) between 19 <r< 21 with high completeness. We employ a convolutional neural network (CNN) to select high-priority targets. The LOW-Zsurvey has already obtained over 22,000 redshifts of dwarf galaxies (M*< 109M), comparable to the number of dwarf galaxies discovered in the Sloan Digital Sky Survey DR8 and GAMA. As a spare fiber survey, LOW-Zcurrently receives fiber allocation for just ∼50% of its targets. However, we estimate that our selection is highly complete: for galaxies atz< 0.03 within our magnitude limits, we achieve better than 95% completeness with ∼1% efficiency using catalog-level photometric cuts. We also demonstrate that our CNN selectionsz< 0.03 galaxies from the photometric cuts subsample at least 10 times more efficiently while maintaining high completeness. The full 5 yr DESI program will expand the LOW-Zsample, densely mapping the low-redshift Universe, providing an unprecedented sample of dwarf galaxies, and providing critical information about how to pursue effective and efficient low-redshift surveys.

     
    more » « less