skip to main content


Search for: All records

Creators/Authors contains: "Ahmed, Reyan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Large tree structures are ubiquitous and real-world relational datasets often have information associated with nodes (e.g., labels or other attributes) and edges (e.g., weights or distances) that need to be communicated to the viewers. Yet, scalable, easy to read tree layouts are difficult to achieve. We consider tree layouts to be readable if they meet some basic requirements: node labels should not overlap, edges should not cross, edge lengths should be preserved, and the output should be compact. There are many algorithms for drawing trees, although very few take node labels or edge lengths into account, and none optimizes all requirements above. With this in mind, we propose a new scalable method for readable tree layouts. The algorithm guarantees that the layout has no edge crossings and no label overlaps, and optimizing one of the remaining aspects: desired edge lengths and compactness. We evaluate the performance of the new algorithm by comparison with related earlier approaches using several real-world datasets, ranging from a few thousand nodes to hundreds of thousands of nodes. Tree layout algorithms can be used to visualize large general graphs, by extracting a hierarchy of progressively larger trees. We illustrate this functionality by presenting several map-like visualizations generated by the new tree layout algorithm. 
    more » « less
  2. Free, publicly-accessible full text available May 1, 2024
  3. null (Ed.)
  4. null (Ed.)
    In the classical Steiner tree problem, given an undirected, connected graph G =( V , E ) with non-negative edge costs and a set of terminals T ⊆ V , the objective is to find a minimum-cost tree E &prime ⊆ E that spans the terminals. The problem is APX-hard; the best-known approximation algorithm has a ratio of ρ = ln (4)+ε < 1.39. In this article, we study a natural generalization, the multi-level Steiner tree (MLST) problem: Given a nested sequence of terminals T ℓ ⊂ … ⊂ T 1 ⊆ V , compute nested trees E ℓ ⊆ … ⊆ E 1 ⊆ E that span the corresponding terminal sets with minimum total cost. The MLST problem and variants thereof have been studied under various names, including Multi-level Network Design, Quality-of-Service Multicast tree, Grade-of-Service Steiner tree, and Multi-tier tree. Several approximation results are known. We first present two simple O (ℓ)-approximation heuristics. Based on these, we introduce a rudimentary composite algorithm that generalizes the above heuristics, and determine its approximation ratio by solving a linear program. We then present a method that guarantees the same approximation ratio using at most 2ℓ Steiner tree computations. We compare these heuristics experimentally on various instances of up to 500 vertices using three different network generation models. We also present several integer linear programming formulations for the MLST problem and compare their running times on these instances. To our knowledge, the composite algorithm achieves the best approximation ratio for up to ℓ = 100 levels, which is sufficient for most applications, such as network visualization or designing multi-level infrastructure. 
    more » « less
  5. We consider the online facility assignment problem, with a set of facilities F of equal capacity l in metric space and customers arriving one by one in an online manner. We must assign customer ci to facility fj before the next customer ci+1 arrives. The cost of this assignment is the distance between ci and fj. The total number of customers is at most |F|l and each customer must be assigned to a facility. The objective is to minimize the sum of all assignment costs. We first consider the case where facilities are placed on a line so that the distance between adjacent facilities is the same and customers appear anywhere on the line. We describe a greedy algorithm with competitive ratio 4|F| and another one with competitive ratio |F|. Finally, we consider a variant in which the facilities are placed on the vertices of a graph and two algorithms in that setting. 
    more » « less