skip to main content


Search for: All records

Creators/Authors contains: "Akgun, U."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A 3-D dosimeter fills the need for treatment plan and delivery verification required by every modern radiation-therapy method used today. This report summarizes a proof-of-concept study to develop a water-equivalent solid 3-D dosimeter that is based on novel radiation-hard scintillating material. The active material of the prototype dosimeter is a blend of radiation-hard peroxide-cured polysiloxane plastic doped with scintillating agent P-Terphenyl and wavelength-shifter BisMSB. The prototype detector was tested with 6 MV and 10 MV x-ray beams at Ohio State University’s Comprehensive Cancer Center. A 3-D dose distribution was successfully reconstructed by a neural network specifically trained for this prototype. This report summarizes the material production procedure, the material’s water equivalency investigation, the design of the prototype dosimeter and its beam tests, as well as the details of the utilized machine learning approach and the reconstructed 3-D dose distributions. 
    more » « less
  2. null (Ed.)
  3. Protons deposit the majority of their energy at the end of their lifetimes, characterized by a Bragg peak. This makes proton therapy a viable way to target cancerous tissue while minimizing damage to surrounding healthy tissue. However, in order to utilize this high precision treatment, greater accuracy in tumor imaging is needed. An approximate uncertainty of ±3% exists in the current practice of proton therapy due to conversions between x-ray and proton stopping power. An imaging system utilizing protons has the potential to eliminate that inaccuracy. This study focuses on developing a proof of concept proton-imaging detector built with a high-density glass scintillator. 
    more » « less