skip to main content


Search for: All records

Creators/Authors contains: "Aleksandrov, Hristiyan A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The majority of harmful atmospheric CO and NOxemissions are from vehicle exhausts. Although there has been success addressing NOxemissions at temperatures above 250 °C with selective catalytic reduction technology, emissions during vehicle cold start (when the temperature is below 150 °C), are a major challenge. Herein, we show we can completely eliminate both CO and NOxemissions simultaneously under realistic exhaust flow, using a highly loaded (2 wt %) atomically dispersed palladium in the extra‐framework positions of the small‐pore chabazite material as a CO and passive NOxadsorber. Until now, atomically dispersed highly loaded (>0.3 wt %) transition‐metal/SSZ‐13 materials have not been known. We devised a general, simple, and scalable route to prepare such materials for PtIIand PdII. Through spectroscopy and materials testing we show that both CO and NOxcan be simultaneously completely abated with 100 % efficiency by the formation of mixed carbonyl‐nitrosyl palladium complex in chabazite micropore.

     
    more » « less
  2. Abstract

    The majority of harmful atmospheric CO and NOxemissions are from vehicle exhausts. Although there has been success addressing NOxemissions at temperatures above 250 °C with selective catalytic reduction technology, emissions during vehicle cold start (when the temperature is below 150 °C), are a major challenge. Herein, we show we can completely eliminate both CO and NOxemissions simultaneously under realistic exhaust flow, using a highly loaded (2 wt %) atomically dispersed palladium in the extra‐framework positions of the small‐pore chabazite material as a CO and passive NOxadsorber. Until now, atomically dispersed highly loaded (>0.3 wt %) transition‐metal/SSZ‐13 materials have not been known. We devised a general, simple, and scalable route to prepare such materials for PtIIand PdII. Through spectroscopy and materials testing we show that both CO and NOxcan be simultaneously completely abated with 100 % efficiency by the formation of mixed carbonyl‐nitrosyl palladium complex in chabazite micropore.

     
    more » « less