skip to main content


Search for: All records

Creators/Authors contains: "Alison, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 23, 2024
  2. The nitrogen-interrupted Nazarov cyclization can be a powerful method for the stereocontrolled synthesis of sp 3 -rich N -heterocycles. However, due to the incompatibility between the basicity of nitrogen and the acidic reaction conditions, examples of this type of Nazarov cyclization are scarce. Herein, we report a one-pot nitrogen-interrupted halo -Prins/ halo -Nazarov coupling cascade that joins two simple building blocks, an enyne and a carbonyl partner, to furnish functionalized cyclopenta[ b ]indolines with up to four contiguous stereocenters. For the first time, we provide a general method for the alkynyl halo -Prins reaction of ketones, thus enabling the formation of quaternary stereocenters. Additionally, we describe the outcomes of secondary alcohol enyne couplings, which exhibit helical chirality transfer. Furthermore, we investigate the impact of aniline enyne substituents on the reaction and evaluate the tolerance of different functional groups. Finally, we discuss the reaction mechanism and demonstrate various transformations of the prepared indoline scaffolds, highlighting their applicability in drug discovery campaigns. 
    more » « less
    Free, publicly-accessible full text available May 24, 2024
  3. Alternative polymer feedstocks are highly desirable to address environmental, social, and security concerns associated with petrochemical-based materials. Lignocellulosic biomass (LCB) has emerged as one critical feedstock in this regard because it is an abundant and ubiquitous renewable resource. LCB can be deconstructed to generate valuable fuels, chemicals, and small molecules/oligomers that are amenable to modification and polymerization. However, the diversity of LCB complicates the evaluation of biorefinery concepts in areas including process scale-up, production outputs, plant economics, and life-cycle management. We discuss aspects of current LCB biorefinery research with a focus on the major process stages, including feedstock selection, fractionation/deconstruction, and characterization, along with product purification, functionalization, and polymerization to manufacture valuable macromolecular materials. We highlight opportunities to valorize underutilized and complex feedstocks, leverage advanced characterization techniques to predict and manage biorefinery outputs, and increase the fraction of biomass converted into valuable products. 
    more » « less
  4. R. Causse (Ed.)
    Here we present length-weight relationships (LWR) for 11 reef fish species from eight islands in French Polynesia. A total of 1,930 fish were collected from five islands in the Society Archipelago (Moorea, Tahiti, Raiatea, Huahine, Tetiaroa) and in three atolls of the Tuamotu Archipelago (Takapoto, Tikehau, and Rangiroa). These fishes span trophic levels, including planktivores, herbivores, and carnivores, and are among the most abundant species for the region. Estimates include LWRs for species never previously published or available in the literature or accessible databases. Measurements of total length (TL: 0.1 cm precision) and total weight (W: 0.01 g precision) were taken. These estimates increase the number of available and robust LWRs for coral reef fishes, providing a better understanding of patterns of growth for these species. With a particular focus on small-bodied species, among the most abundant observed in underwater visual censuses, these estimates will allow marine resource managers and local scientists to characterize fish biomass in French Polynesia with greater precision. 
    more » « less
    Free, publicly-accessible full text available September 11, 2024
  5. Free, publicly-accessible full text available December 8, 2024
  6. Abstract

    Substantial global attention is focused on how to reduce the risk of future pandemics. Reducing this risk requires investment in prevention, preparedness, and response. Although preparedness and response have received significant focus, prevention, especially the prevention of zoonotic spillover, remains largely absent from global conversations. This oversight is due in part to the lack of a clear definition of prevention and lack of guidance on how to achieve it. To address this gap, we elucidate the mechanisms linking environmental change and zoonotic spillover using spillover of viruses from bats as a case study. We identify ecological interventions that can disrupt these spillover mechanisms and propose policy frameworks for their implementation. Recognizing that pandemics originate in ecological systems, we advocate for integrating ecological approaches alongside biomedical approaches in a comprehensive and balanced pandemic prevention strategy.

     
    more » « less
  7. We report a Brønsted acid-catalyzed carbocyclization cascade, featuring condensation of an alcohol/sulfonamide with an aldehyde followed by an intramolecular three-component coupling involving an alkyne, an oxocarbenium/iminium ion, and an arene. A formal cycloaddition is embedded in the cationic cascade, which enables the synthesis of a wide range of fused heterotricycles. The diastereoselectivity of the cascade is studied using secondary alcohols/sulfonamides with different carbonyl partners. The described method results in the preparation of synthetically versatile scaffolds with ample opportunity for further derivatization at the resulting tetrasubstituted olefin, or by inclusion of other functionalizable motifs from the starting materials. It is worth noting that this chemistry also facilitates the synthesis of piperidines and 1,4-oxazepanes, as well as the inclusion of indoles and benzofurans, which are privileged motifs for medicinal chemistry. Herein we present the generality of this approach and some chemical transformations that can be achieved with our substrates. 
    more » « less
  8. Piezo1 is the stretch activated Ca2+channel in red blood cells that mediates homeostatic volume control. Here, we study the organization of Piezo1 in red blood cells using a combination of super-resolution microscopy techniques and electron microscopy. Piezo1 adopts a non-uniform distribution on the red blood cell surface, with a bias toward the biconcave ‘dimple’. Trajectories of diffusing Piezo1 molecules, which exhibit confined Brownian diffusion on short timescales and hopping on long timescales, also reflect a bias toward the dimple. This bias can be explained by ‘curvature coupling’ between the intrinsic curvature of the Piezo dome and the curvature of the red blood cell membrane. Piezo1 does not form clusters with itself, nor does it colocalize with F-actin, Spectrin, or the Gardos channel. Thus, Piezo1 exhibits the properties of a force-through-membrane sensor of curvature and lateral tension in the red blood cell. 
    more » « less
  9. Abstract During recent decades, pathogens that originated in bats have become an increasing public health concern. A major challenge is to identify how those pathogens spill over into human populations to generate a pandemic threat 1 . Many correlational studies associate spillover with changes in land use or other anthropogenic stressors 2,3 , although the mechanisms underlying the observed correlations have not been identified 4 . One limitation is the lack of spatially and temporally explicit data on multiple spillovers, and on the connections among spillovers, reservoir host ecology and behaviour and viral dynamics. We present 25 years of data on land-use change, bat behaviour and spillover of Hendra virus from Pteropodid bats to horses in subtropical Australia. These data show that bats are responding to environmental change by persistently adopting behaviours that were previously transient responses to nutritional stress. Interactions between land-use change and climate now lead to persistent bat residency in agricultural areas, where periodic food shortages drive clusters of spillovers. Pulses of winter flowering of trees in remnant forests appeared to prevent spillover. We developed integrative Bayesian network models based on these phenomena that accurately predicted the presence or absence of clusters of spillovers in each of the 25 years. Our long-term study identifies the mechanistic connections between habitat loss, climate and increased spillover risk. It provides a framework for examining causes of bat virus spillover and for developing ecological countermeasures to prevent pandemics. 
    more » « less