skip to main content


Search for: All records

Creators/Authors contains: "Allen, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. For chemical recycling of plastic wastes to be viable, chemical products generated in recycling need to find markets. A network model of the U.S. chemical manufacturing industry was used to assess at what cost points, and the extent to which, chemical products from thermal pyrolysis of polyethylene might find markets in the current U.S. chemical manufacturing industry. Network modeling determined the cost points at which the simulated industry network utilized the thermal pyrolysis products and which processes were displaced by the supply of recycled materials. The characteristic feature of the simulations is the large number of processes in the chemical manufacturing network that are impacted by the availability of a relatively small number of products from polyethylene recycling. In the case of polyethylene recycling, the capital cost requirements for expanding capacity to effectively utilize the recycled materials is greater than the capital required for the pyrolysis process. This suggests that identifying scenarios where recycled materials can be utilized in processes that have excess capacity will be a critical consideration in techno-economic analyses of recycling plastics. 
    more » « less
    Free, publicly-accessible full text available June 26, 2024
  2. Abstract Methane emission reductions are crucial for addressing climate change. It offers short-term benefits as it holds high short-term reductions in radiative forcing. Efforts towards the reduction of methane emissions are already underway. In this study, we compared and analyzed the mitigation benefits of cutting large amounts of methane emissions from the oil and gas sector on short-time scales with reducing an equivalent amount of carbon dioxide using carbon capture and storage (CCS). Characteristics of CCS are that it would require substantial infrastructure development and that it incorporates deployment delays. Results illustrate that prioritizing quickly deployable methane emission reduction alternatives that necessitate minimal construction is an efficient approach to achieve near-term climate change relief. Graphical abstract 
    more » « less
    Free, publicly-accessible full text available April 5, 2024
  3. Free, publicly-accessible full text available April 25, 2024
  4. Abstract

    One mechanism proposed to explain high species diversity in tropical systems is strong negative conspecific density dependence (CDD), which reduces recruitment of juveniles in proximity to conspecific adult plants. Although evidence shows that plant-specific soil pathogens can drive negative CDD, trees also form key mutualisms with mycorrhizal fungi, which may counteract these effects. Across 43 large-scale forest plots worldwide, we tested whether ectomycorrhizal tree species exhibit weaker negative CDD than arbuscular mycorrhizal tree species. We further tested for conmycorrhizal density dependence (CMDD) to test for benefit from shared mutualists. We found that the strength of CDD varies systematically with mycorrhizal type, with ectomycorrhizal tree species exhibiting higher sapling densities with increasing adult densities than arbuscular mycorrhizal tree species. Moreover, we found evidence of positive CMDD for tree species of both mycorrhizal types. Collectively, these findings indicate that mycorrhizal interactions likely play a foundational role in global forest diversity patterns and structure.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024