skip to main content


Search for: All records

Creators/Authors contains: "Allgeier, Jacob E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Coral reefs are declining at an unprecedented rate. Effective management and conservation initiatives necessitate improved understanding of the drivers of production because the high rates found in these ecosystems are the foundation of the many services they provide. The water column is the nexus of coral reef ecosystem dynamics, and functions as the interface through which essentially all energy and nutrients are transferred to fuel both new and recycled production. Substantial research has described many aspects of water column dynamics, often focusing on specific components because water column dynamics are highly spatially and temporally context dependent. Although necessary, a cost of this approach is that these dynamics are often not well linked to the broader ecosystem or across systems. To help overcome the challenge of context dependence, we provide a comprehensive review of this literature, and synthesise it through the perspective of ecosystem ecology. Specifically, we provide a framework to organise the drivers of temporal and spatial variation in production dynamics, structured around five primary state factors. These state factors are used to deconstruct the environmental contexts in which three water column sub‐food webs mediate ‘new’ and ‘recycled’ production. We then highlight critical pathways by which global change drivers are altering coral reefsviathe water column. We end by discussing four key knowledge gaps hindering understanding of the role of the water column for mediating coral reef production, and how overcoming these could improve conservation and management strategies. Throughout, we identify areas of extensive research and those where studies remain lacking and provide a database of 84 published studies. Improved integration of water column dynamics into models of coral reef ecosystem function is imperative to achieve the understanding of ecosystem production necessary to develop effective conservation and management strategies needed to stem global coral loss.

     
    more » « less
  2. Abstract

    The relative importance of evolutionary history and ecology for traits that drive ecosystem processes is poorly understood. Consumers are essential drivers of nutrient cycling on coral reefs, and thus ecosystem productivity. We use nine consumer “chemical traits” associated with nutrient cycling, collected from 1,572 individual coral reef fishes (178 species spanning 41 families) in two biogeographic regions, the Caribbean and Polynesia, to quantify the relative importance of phylogenetic history and ecological context as drivers of chemical trait variation on coral reefs. We find: (1) phylogenetic relatedness is the best predictor of all chemical traits, substantially outweighing the importance of ecological factors thought to be key drivers of these traits, (2) phylogenetic conservatism in chemical traits is greater in the Caribbean than Polynesia, where our data suggests that ecological forces have a greater influence on chemical trait variation, and (3) differences in chemical traits between regions can be explained by differences in nutrient limitation associated with the geologic context of our study locations. Our study provides multiple lines of evidence that phylogeny is a critical determinant of contemporary nutrient dynamics on coral reefs. More broadly our findings highlight the utility of evolutionary history to improve prediction in ecosystem ecology.

     
    more » « less
  3. Abstract

    Improving coral reef conservation requires heightened understanding of the mechanisms by which coral cope with changing environmental conditions to maintain optimal health. We used a long‐term (10 month) in situ experiment with two phylogenetically diverse scleractinians (Acropora palmataandPorites porites) to test how coral–symbiotic algal interactions changed under real‐world conditions that were a priori expected to be beneficial (fish‐mediated nutrients) and to be harmful, but non‐lethal, for coral (fish + anthropogenic nutrients). Analyzing nine response variables of nutrient stoichiometry and stable isotopes per coral fragment, we found that nutrients from fish positively affected coral growth, and moderate doses of anthropogenic nutrients had no additional effects. While growing, coral maintained homeostasis in their nutrient pools, showing tolerance to the different nutrient regimes. Nonetheless, structural equation models revealed more nuanced relationships, showing that anthropogenic nutrients reduced the diversity of coral–symbiotic algal interactions and caused nutrient and carbon flow to be dominated by the symbiont. Our findings show that nutrient and carbon pathways are fundamentally “rewired” under anthropogenic nutrient regimes in ways that could increase corals’ susceptibility to further stressors. We hypothesize that our experiment captured coral in a previously unrecognized transition state between mutualism and antagonism. These findings highlight a notable parallel between how anthropogenic nutrients promote symbiont dominance with the holobiont, and how they promote macroalgal dominance at the coral reef scale. Our findings suggest more realistic experimental conditions, including studies across gradients of anthropogenic nutrient enrichment as well as the incorporation of varied nutrient and energy pathways, may facilitate conservation efforts to mitigate coral loss.

     
    more » « less