skip to main content


Search for: All records

Creators/Authors contains: "Alvarez, Mariano"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This record contains supplementary information for the article "Inheritance of DNA methylation differences in the mangrove Rhizophora mangle" published in Evolution&Development. It contains the barcodes (barcodes.txt), the reference contigs (contigs.fasta.gz), the annotation of the reference contigs (mergedAnnot.csv.gz), the SNPs (snps.vcf.gz), the methylation data (methylation.txt.gz), and the experimental design (design.txt). All data are unfiltered. Short reads are available on SRA (PRJNA746695). Note that demultiplexing of the pooled reads (SRX11452376) will fail because the barcodes are already removed and the header information is lost during SRA submission. Instead, use the pre-demultiplexed reads that are as well linked to PRJNA746695.


     

    Table S13 (TableS13_DSSwithGeneAnnotation.offspringFams.csv.gz):

    Differential cytosine methylation between families using the mother data set. The first three columns fragment number ("chr"), the position within the fragment ("pos"), and the sequence context ("context"). Columns with the pattern FDR_<X>_vs_<Y> contain false discovery rates of a test comparing population X with population Y. Average DNA methylation levels for each population are given in the columns "AC", "FD", "HI", "UTB", "WB", and "WI". The remaining columns contain the annotation of the fragment, for example whether it matches to a gene and if yes, the gene name ID and description are provided.

     
    more » « less
  2. Abstract

    Despite the severe impacts of theDeepwater Horizonoil spill, the foundation plant speciesSpartina alternifloraproved resilient to heavy oiling, providing an opportunity to identify mechanisms of response to the anthropogenic stress of crude oil exposure. We assessed plants from oil‐affected and unaffected populations using a custom DNA microarray to identify genomewide transcription patterns and gene expression networks that respond to crude oil exposure. In addition, we used T‐DNA insertion lines of the model grassBrachypodium distachyonto assess the contribution of four novel candidate genes to crude oil response. Responses inS. alterniflorato hydrocarbon exposure across the transcriptome as well as xenobiotic specific response pathways had little overlap with those previously identified in the model plantArabidopsis thaliana. Among T‐DNA insertion lines ofB. distachyon, we found additional support for two candidate genes, one (ATTPS21) involved in volatile production, and the other (SUVH5) involved in epigenetic regulation of gene expression, that may be important in the response to crude oil. The architecture of crude oil response inS. alterniflorais unique from that of the model speciesA. thaliana,suggesting that xenobiotic response may be highly variable across plant species. In addition, further investigations of regulatory networks may benefit from more information about epigenetic response pathways.

     
    more » « less