skip to main content


Search for: All records

Creators/Authors contains: "Anderson���Teixeira, Kristina J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Numerous studies have shown reduced performance in plants that are surrounded by neighbours of the same species1,2, a phenomenon known as conspecific negative density dependence (CNDD)3. A long-held ecological hypothesis posits that CNDD is more pronounced in tropical than in temperate forests4,5, which increases community stabilization, species coexistence and the diversity of local tree species6,7. Previous analyses supporting such a latitudinal gradient in CNDD8,9have suffered from methodological limitations related to the use of static data10–12. Here we present a comprehensive assessment of latitudinal CNDD patterns using dynamic mortality data to estimate species-site-specific CNDD across 23 sites. Averaged across species, we found that stabilizing CNDD was present at all except one site, but that average stabilizing CNDD was not stronger toward the tropics. However, in tropical tree communities, rare and intermediate abundant species experienced stronger stabilizing CNDD than did common species. This pattern was absent in temperate forests, which suggests that CNDD influences species abundances more strongly in tropical forests than it does in temperate ones13. We also found that interspecific variation in CNDD, which might attenuate its stabilizing effect on species diversity14,15, was high but not significantly different across latitudes. Although the consequences of these patterns for latitudinal diversity gradients are difficult to evaluate, we speculate that a more effective regulation of population abundances could translate into greater stabilization of tropical tree communities and thus contribute to the high local diversity of tropical forests.

     
    more » « less
    Free, publicly-accessible full text available March 21, 2025
  2. Abstract

    Within vascular plants, the partitioning of hydraulic resistance along the soil‐to‐leaf continuum affects transpiration and its response to environmental conditions. In trees, the fractional contribution of leaf hydraulic resistance (Rleaf) to total soil‐to‐leaf hydraulic resistance (Rtotal), or fRleaf(=Rleaf/Rtotal), is thought to be large, but this has not been tested comprehensively. We compiled a multibiome data set of fRleafusing new and previously published measurements of pressure differences within trees in situ. Across 80 samples, fRleafaveraged 0.51 (95% confidence interval [CI] = 0.46−0.57) and it declined with tree height. We also used the allometric relationship between field‐based measurements of soil‐to‐leaf hydraulic conductance and laboratory‐based measurements of leaf hydraulic conductance to compute the average fRleaffor 19 tree samples, which was 0.40 (95% CI = 0.29−0.56). The in situ technique produces a more accurate descriptor of fRleafbecause it accounts for dynamic leaf hydraulic conductance. Both approaches demonstrate the outsized role of leaves in controlling tree hydrodynamics. A larger fRleafmay help stems from loss of hydraulic conductance. Thus, the decline in fRleafwith tree height would contribute to greater drought vulnerability in taller trees and potentially to their observed disproportionate drought mortality.

     
    more » « less
  3. Abstract

    One mechanism proposed to explain high species diversity in tropical systems is strong negative conspecific density dependence (CDD), which reduces recruitment of juveniles in proximity to conspecific adult plants. Although evidence shows that plant-specific soil pathogens can drive negative CDD, trees also form key mutualisms with mycorrhizal fungi, which may counteract these effects. Across 43 large-scale forest plots worldwide, we tested whether ectomycorrhizal tree species exhibit weaker negative CDD than arbuscular mycorrhizal tree species. We further tested for conmycorrhizal density dependence (CMDD) to test for benefit from shared mutualists. We found that the strength of CDD varies systematically with mycorrhizal type, with ectomycorrhizal tree species exhibiting higher sapling densities with increasing adult densities than arbuscular mycorrhizal tree species. Moreover, we found evidence of positive CMDD for tree species of both mycorrhizal types. Collectively, these findings indicate that mycorrhizal interactions likely play a foundational role in global forest diversity patterns and structure.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  4. Abstract

    Trees continuously regulate leaf physiology to acquire CO2while simultaneously avoiding excessive water loss. The balance between these two processes, or water use efficiency (WUE), is fundamentally important to understanding changes in carbon uptake and transpiration from the leaf to the globe under environmental change. While increasing atmospheric CO2(iCO2) is known to increase tree intrinsic water use efficiency (iWUE), less clear are the additional impacts of climate and acidic air pollution and how they vary by tree species. Here, we couple annually resolved long‐term records of tree‐ring carbon isotope signatures with leaf physiological measurements ofQuercus rubra(Quru) andLiriodendron tulipifera(Litu) at four study locations spanning nearly 100 km in the eastern United States to reconstruct historical iWUE, net photosynthesis (Anet), and stomatal conductance to water (gs) since 1940. We first show 16%–25% increases in tree iWUE since the mid‐20th century, primarily driven by iCO2, but also document the individual and interactive effects of nitrogen (NOx) and sulfur (SO2) air pollution overwhelming climate. We find evidence forQuruleaf gas exchange being less tightly regulated thanLituthrough an analysis of isotope‐derived leaf internal CO2(Ci), particularly in wetter, recent years. Modeled estimates of seasonally integratedAnetandgsrevealed a 43%–50% stimulation ofAnetwas responsible for increasing iWUE in both tree species throughout 79%–86% of the chronologies with reductions ingsattributable to the remaining 14%–21%, building upon a growing body of literature documenting stimulatedAnetoverwhelming reductions ingsas a primary mechanism of increasing iWUE of trees. Finally, our results underscore the importance of considering air pollution, which remains a major environmental issue in many areas of the world, alongside climate in the interpretation of leaf physiology derived from tree rings.

     
    more » « less
  5. null (Ed.)