skip to main content


Search for: All records

Creators/Authors contains: "Anderson, D. R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We report the discovery of two mini-Neptunes in near 2:1 resonance orbits (P = 7.610303 d for HIP 113103 b and P  = 14.245651 d for HIP 113103 c) around the adolescent K-star HIP 113103 (TIC 121490076). The planet system was first identified from the TESS mission, and was confirmed via additional photometric and spectroscopic observations, including a ∼17.5 h observation for the transits of both planets using ESA CHEOPS. We place ≤4.5 min and ≤2.5 min limits on the absence of transit timing variations over the 3 yr photometric baseline, allowing further constraints on the orbital eccentricities of the system beyond that available from the photometric transit duration alone. With a planetary radius of Rp  =  $1.829_{-0.067}^{+0.096}$ R⊕, HIP 113103 b resides within the radius gap, and this might provide invaluable information on the formation disparities between super-Earths and mini-Neptunes. Given the larger radius Rp  = $2.40_{-0.08}^{+0.10}$ R⊕ for HIP 113103 c, and close proximity of both planets to HIP 113103, it is likely that HIP 113103 b might have lost (or is still losing) its primordial atmosphere. We therefore present simulated atmospheric transmission spectra of both planets using JWST, HST, and Twinkle. It demonstrates a potential metallicity difference (due to differences in their evolution) would be a challenge to detect if the atmospheres are in chemical equilibrium. As one of the brightest multi sub-Neptune planet systems suitable for atmosphere follow up, HIP 113103 b and HIP 113103 c could provide insight on planetary evolution for the sub-Neptune K-star population.

     
    more » « less
  2. ABSTRACT

    In this paper, we present high-resolution spectroscopic transit observations from ESPRESSO of the super-Neptune WASP-166 b. In addition to spectroscopic ESPRESSO data, we analyse photometric data from TESS of six WASP-166 b transits along with simultaneous NGTS observations of the ESPRESSO runs. These observations were used to fit for the planetary parameters as well as assessing the level of stellar activity (e.g. spot crossings, flares) present during the ESPRESSO observations. We utilize the reloaded Rossiter McLaughlin (RRM) technique to spatially resolve the stellar surface, characterizing the centre-to-limb convection-induced variations, and to refine the star–planet obliquity. We find WASP-166 b has a projected obliquity of $\lambda = -15.52^{+2.85}_{-2.76}\, ^{\circ }$ and vsin (i) = 4.97 ± 0.09 km s−1 which is consistent with the literature. We were able to characterize centre-to-limb convective variations as a result of granulation on the surface of the star on the order of a few km s−1 for the first time. We modelled the centre-to-limb convective variations using a linear, quadratic, and cubic model with the cubic being preferred. In addition, by modelling the differential rotation and centre-to-limb convective variations simultaneously, we were able to retrieve a potential antisolar differential rotational shear (α ∼ −0.5) and stellar inclination (i* either 42.03$^{+9.13}_{-9.60}\, ^{\circ }$ or 133.64$^{+8.42}_{-7.98}\, ^{\circ }$ if the star is pointing towards or away from us). Finally, we investigate how the shape of the cross-correlation functions change as a function of limb angle and compare our results to magnetohydrodynamic simulations.

     
    more » « less
  3. ABSTRACT

    DW Cnc is an intermediate polar which has previously been observed in both high and low states. Observations of the high state of DW Cnc have previously revealed a spin period at ∼38.6 min, however, observations from the 2018 to 2019 low state showed no evidence of the spin period. We present results from our analysis of 12 s cadence photometric data collected by Next Generation Transit Survey of DW Cnc during the high state which began in 2019. Following the previously reported suppression of the spin period signal, we identify the return of this signal during the high state, consistent with previous observations of it. We identify this as the restarting of accretion during the high state. We further identified three short outbursts lasting ∼1 d in DW Cnc with a mean recurrence time of ∼60 d and an amplitude of ∼1 mag. These are the first outbursts identified in DW Cnc since 2008. Due to the short nature of these events, we identify them not as a result of accretion instabilities but instead either from instabilities originating from the interaction of the magnetorotational instability in the accretion disc and the magnetic field generated by the white dwarf or the result of magnetic gating.

     
    more » « less
  4. ABSTRACT We present the discovery and characterization of six short-period, transiting giant planets from NASA’s Transiting Exoplanet Survey Satellite (TESS) -- TOI-1811 (TIC 376524552), TOI-2025 (TIC 394050135), TOI-2145 (TIC 88992642), TOI-2152 (TIC 395393265), TOI-2154 (TIC 428787891), and TOI-2497 (TIC 97568467). All six planets orbit bright host stars (8.9 <G < 11.8, 7.7 <K < 10.1). Using a combination of time-series photometric and spectroscopic follow-up observations from the TESS Follow-up Observing Program Working Group, we have determined that the planets are Jovian-sized (RP  = 0.99--1.45 RJ), have masses ranging from 0.92 to 5.26 MJ, and orbit F, G, and K stars (4766 ≤ Teff ≤ 7360 K). We detect a significant orbital eccentricity for the three longest-period systems in our sample: TOI-2025 b (P  = 8.872 d, 0.394$^{+0.035}_{-0.038}$), TOI-2145 b (P  = 10.261 d, e  = $0.208^{+0.034}_{-0.047}$), and TOI-2497 b (P  = 10.656 d, e  = $0.195^{+0.043}_{-0.040}$). TOI-2145 b and TOI-2497 b both orbit subgiant host stars (3.8 < log  g <4.0), but these planets show no sign of inflation despite very high levels of irradiation. The lack of inflation may be explained by the high mass of the planets; $5.26^{+0.38}_{-0.37}$ MJ (TOI-2145 b) and 4.82 ± 0.41 MJ (TOI-2497 b). These six new discoveries contribute to the larger community effort to use TESS to create a magnitude-complete, self-consistent sample of giant planets with well-determined parameters for future detailed studies. 
    more » « less
  5. null (Ed.)
  6. ABSTRACT

    We present the discovery and characterization of two transiting planets observed by TESS in the light curves of the young and bright (V = 9.67) star HD73583 (TOI-560). We perform an intensive spectroscopic and photometric space- and ground-based follow-up in order to confirm and characterize the system. We found that HD73583 is a young (∼500 Myr) active star with a rotational period of 12.08 ± 0.11  d, and a mass and radius of 0.73 ± 0.02 M⊙ and 0.65 ± 0.02 R⊙, respectively. HD 73583 b (Pb = $6.3980420 _{ - 0.0000062 } ^ { + 0.0000067 }$ d) has a mass and radius of $10.2 _{ - 3.1 } ^ { + 3.4 }$ M⊕ and 2.79 ± 0.10 R⊕, respectively, which gives a density of $2.58 _{ - 0.81 } ^ { + 0.95 }$ ${\rm g\, cm^{-3}}$. HD 73583 c (Pc = $18.87974 _{ - 0.00074 } ^ { + 0.00086 }$ d) has a mass and radius of $9.7 _{ - 1.7 } ^ { + 1.8 }$ M⊕ and $2.39 _{ - 0.09 } ^ { + 0.10 }$ R⊕, respectively, which translates to a density of $3.88 _{ - 0.80 } ^ { + 0.91 }$ ${\rm g\, cm^{-3}}$. Both planets are consistent with worlds made of a solid core surrounded by a volatile envelope. Because of their youth and host star brightness, they both are excellent candidates to perform transmission spectroscopy studies. We expect ongoing atmospheric mass-loss for both planets caused by stellar irradiation. We estimate that the detection of evaporating signatures on H and He would be challenging, but doable with present and future instruments.

     
    more » « less
  7. null (Ed.)
    We report the detection of a transiting super-Earth-sized planet ( R = 1.39 ± 0.09 R ⊕ ) in a 1.4-day orbit around L 168-9 (TOI-134), a bright M1V dwarf ( V = 11, K = 7.1) located at 25.15 ± 0.02 pc. The host star was observed in the first sector of the Transiting Exoplanet Survey Satellite (TESS) mission. For confirmation and planet mass measurement purposes, this was followed up with ground-based photometry, seeing-limited and high-resolution imaging, and precise radial velocity (PRV) observations using the HARPS and Magellan /PFS spectrographs. By combining the TESS data and PRV observations, we find the mass of L 168-9 b to be 4.60 ± 0.56 M ⊕ and thus the bulk density to be 1.74 −0.33 +0.44 times higher than that of the Earth. The orbital eccentricity is smaller than 0.21 (95% confidence). This planet is a level one candidate for the TESS mission’s scientific objective of measuring the masses of 50 small planets, and it is one of the most observationally accessible terrestrial planets for future atmospheric characterization. 
    more » « less
  8. null (Ed.)