skip to main content


Search for: All records

Creators/Authors contains: "Angelo, Isabel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The structure of protoplanetary disks plays an essential role in planet formation. A disk that is highly inclined, or “edge-on,” is of particular interest since its geometry provides a unique opportunity to study the disk’s vertical structure and radial extent. Candidate edge-on protoplanetary disks are typically identified via their unique spectral energy distributions (SEDs) and subsequently confirmed through high-resolution imaging. However, this selection process is likely biased toward the largest, most-massive disks, and the resulting sample may not accurately represent the underlying disk population. To investigate this, we generated a grid of protoplanetary disk models using radiative transfer simulations and determined which sets of disk parameters produce edge-on systems that could be recovered by the aforementioned detection techniques—i.e., identified by their SEDs and confirmed through follow-up imaging with the Hubble Space Telescope. In doing so, we adopt a quantitative working definition of “edge-on disks” (EODs) that is observation driven and agnostic about the disk inclination or other properties. Folding in empirical disk demographics, we predict an occurrence rate of 6.2% for EODs and quantify biases toward highly inclined, massive disks. We also find that EODs are underrepresented in samples of Spitzer-studied young stellar objects, particularly for disks with host masses ofM≲ 0.5M. Overall, our analysis suggests that several dozen EODs remain undiscovered in nearby star-forming regions, and provides a universal selection process to identify EODs for consistent, population-level demographic studies.

     
    more » « less
  2. Abstract

    The extreme environments of ultra-short-period planets (USPs) make excellent laboratories to study how exoplanets obtain, lose, retain, and/or regain gaseous atmospheres. We present the confirmation and characterization of the USP TOI-1347 b, a 1.8 ± 0.1Rplanet on a 0.85 day orbit that was detected with photometry from the TESS mission. We measured radial velocities of the TOI-1347 system using Keck/HIRES and HARPS-N and found the USP to be unusually massive at 11.1 ± 1.2M. The measured mass and radius of TOI-1347 b imply an Earth-like bulk composition. A thin H/He envelope (>0.01% by mass) can be ruled out at high confidence. The system is between 1 and 1.8 Gyr old; therefore, intensive photoevaporation should have concluded. We detected a tentative phase-curve variation (3σ) and a secondary eclipse (2σ) in TESS photometry, which, if confirmed, could indicate the presence of a high-mean-molecular-weight atmosphere. We recommend additional optical and infrared observations to confirm the presence of an atmosphere and investigate its composition.

     
    more » « less
  3. Abstract

    Highly eccentric orbits are one of the major surprises of exoplanets relative to the solar system and indicate rich and tumultuous dynamical histories. One system of particular interest is Kepler-1656, which hosts a sub-Jovian planet with an eccentricity of 0.8. Sufficiently eccentric orbits will shrink in the semimajor axis due to tidal dissipation of orbital energy during periastron passage. Here our goal was to assess whether Kepler-1656b is currently undergoing such high-eccentricity migration, and to further understand the system’s origins and architecture. We confirm a second planet in the system withMc= 0.40 ± 0.09Mjupand Pc= 1919 ± 27 days. We simulated the dynamical evolution of planet b in the presence of planet c and find a variety of possible outcomes for the system, such as tidal migration and engulfment. The system is consistent with an in situ dynamical origin of planet b followed by subsequent eccentric Kozai–Lidov perturbations that excite Kepler-1656b’s eccentricity gently, i.e., without initiating tidal migration. Thus, despite its high eccentricity, we find no evidence that planet b is or has migrated through the high-eccentricity channel. Finally, we predict the outer orbit to be mutually inclined in a nearly perpendicular configuration with respect to the inner planet orbit based on the outcomes of our simulations and make observable predictions for the inner planet’s spin–orbit angle. Our methodology can be applied to other eccentric or tidally locked planets to constrain their origins, orbital configurations, and properties of a potential companion.

     
    more » « less
  4. Abstract

    With JWST’s successful deployment and unexpectedly high fuel reserves, measuring the masses of sub-Neptunes transiting bright, nearby stars will soon become the bottleneck for characterizing the atmospheres of small exoplanets via transmission spectroscopy. Using a carefully curated target list and observations from more than 2 yr of APF-Levy and Keck-HIRES Doppler monitoring, the TESS-Keck Survey is working toward alleviating this pressure. Here we present mass measurements for 11 transiting planets in eight systems that are particularly suited to atmospheric follow-up with JWST. We also report the discovery and confirmation of a temperate super-Jovian-mass planet on a moderately eccentric orbit. The sample of eight host stars, which includes one subgiant, spans early-K to late-F spectral types (Teff= 5200–6200 K). We homogeneously derive planet parameters using a joint photometry and radial velocity modeling framework, discuss the planets’ possible bulk compositions, and comment on their prospects for atmospheric characterization.

     
    more » « less
  5. Abstract We report the discovery of HIP-97166b (TOI-1255b), a transiting sub-Neptune on a 10.3 day orbit around a K0 dwarf 68 pc from Earth. This planet was identified in a systematic search of TESS Objects of Interest for planets with eccentric orbits, based on a mismatch between the observed transit duration and the expected duration for a circular orbit. We confirmed the planetary nature of HIP-97166b with ground-based radial-velocity measurements and measured a mass of M b = 20 ± 2 M ⊕ along with a radius of R b = 2.7 ± 0.1 R ⊕ from photometry. We detected an additional nontransiting planetary companion with M c sin i = 10 ± 2 M ⊕ on a 16.8 day orbit. While the short transit duration of the inner planet initially suggested a high eccentricity, a joint RV-photometry analysis revealed a high impact parameter b = 0.84 ± 0.03 and a moderate eccentricity. Modeling the dynamics with the condition that the system remain stable over >10 5 orbits yielded eccentricity constraints e b = 0.16 ± 0.03 and e c < 0.25. The eccentricity we find for planet b is above average for the small population of sub-Neptunes with well-measured eccentricities. We explored the plausible formation pathways of this system, proposing an early instability and merger event to explain the high density of the inner planet at 5.3 ± 0.9 g cc −1 as well as its moderate eccentricity and proximity to a 5:3 mean-motion resonance. 
    more » « less