skip to main content


Search for: All records

Creators/Authors contains: "Ashall, C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    The Near Infrared (NIR) spectra of the Type IIb supernova (SN IIb) SN 2020acat, obtained at various times throughout the optical follow-up campaign, are presented here. The dominant He i 1.0830 and 2.0581 $\mu$m features are seen to develop flat-topped P-Cygni profiles as the NIR spectra evolve towards the nebular phase. The nature of the NIR helium peaks imply that there was a lack of mixing between the helium shell and the heavier inner ejecta in SN 2020acat. Analysis of the flat-top features showed that the boundary of the lower velocity of the helium shell was ∼3 − 4 × 103 km s−1. The NIR spectra of SN 2020acat were compared to both SN 2008ax and SN 2011dh to determine the uniqueness of the flat-topped helium features. While SN 2011dh lacked a flat-topped NIR helium profile, SN 2008ax displayed NIR helium features that were very similar to those seen in SN 2020acat, suggesting that the flat-topped feature is not unique to SN 2020acat and may be the product of the progenitors structure.

     
    more » « less
  2. ABSTRACT

    We analyse new multifilter Hubble Space Telescope (HST) photometry of the normal Type Ia supernova (SN Ia) 2011fe out to ≈2400 d after maximum light, the latest observations to date of a SN Ia. We model the pseudo-bolometric light curve with a simple radioactive decay model and find energy input from both 57Co and 55Fe are needed to power the late-time luminosity. This is the first detection of 55Fe in a SN Ia. We consider potential sources of contamination such as a surviving companion star or delaying the deposition time-scale for 56Co positrons but these scenarios are ultimately disfavored. The relative isotopic abundances place direct constraints on the burning conditions experienced by the white dwarf (WD). Additionally, we place a conservative upper limit of <10−3 M⊙ on the synthesized mass of 44Ti. Only two classes of explosion models are currently consistent with all observations of SN 2011fe: (1) the delayed detonation of a low-ρc, near-MCh (1.2–1.3 M⊙) WD, or (2) a sub-MCh (1.0–1.1 M⊙) WD experiencing a thin-shell double detonation.

     
    more » « less
  3. ABSTRACT

    A nebular spectrum of the peculiar, low-luminosity type Ia supernova 2010lp is modelled in order to estimate the composition of the inner ejecta and to illuminate the nature of this event. Despite having a normally declining light curve, SN 2010lp was similar spectroscopically to SN 1991bg at early times. However, it showed a very unusual double-peaked [O i] $\lambda \lambda \, 6300,6363$ emission at late times (Taubenberger et al.). Modelling of the nebular spectrum suggests that a very small amount of oxygen (∼0.05 M⊙), expanding at very low speed (≲ 2000 km s−1) is sufficient to reproduce the observed emission. The rest of the nebula is not too dissimilar from SN 1991bg, except that SN 2010lp is slightly more luminous. The double-peaked [O i] emission suggests that SN 2010lp may be consistent with the merger or collision of two low-mass white dwarfs. The low end of the SN Ia luminosity sequence is clearly populated by diverse events, where different channels may contribute.

     
    more » « less
  4. Abstract

    We present high-cadence ultraviolet through near-infrared observations of the Type Ia supernova (SN Ia) 2023bee atD= 32 ± 3 Mpc, finding excess flux in the first days after explosion, particularly in our 10 minutes cadence TESS light curve and Swift UV data. Compared to a few other normal SNe Ia with early excess flux, the excess flux in SN 2023bee is redder in the UV and less luminous. We present optical spectra of SN 2023bee, including two spectra during the period where the flux excess is dominant. At this time, the spectra are similar to those of other SNe Ia but with weaker Siii, Cii,and Caiiabsorption lines, perhaps because the excess flux creates a stronger continuum. We compare the data to several theoretical models on the origin of early excess flux in SNe Ia. Interaction with either the companion star or close-in circumstellar material is expected to produce a faster evolution than observed. Radioactive material in the outer layers of the ejecta, either from double detonation explosion or from a56Ni clump near the surface, cannot fully reproduce the evolution either, likely due to the sensitivity of early UV observable to the treatment of the outer part of ejecta in simulation. We conclude that no current model can adequately explain the full set of observations. We find that a relatively large fraction of nearby, bright SNe Ia with high-cadence observations have some amount of excess flux within a few days of explosion. Considering potential asymmetric emission, the physical cause of this excess flux may be ubiquitous in normal SNe Ia.

     
    more » « less
  5. Abstract

    We present a JWST mid-infrared (MIR) spectrum of the underluminous Type Ia Supernova (SN Ia) 2022xkq, obtained with the medium-resolution spectrometer on the Mid-Infrared Instrument (MIRI) ∼130 days post-explosion. We identify the first MIR lines beyond 14μm in SN Ia observations. We find features unique to underluminous SNe Ia, including the following: isolated emission of stable Ni, strong blends of [Tiii], and large ratios of singly ionized to doubly ionized species in both [Ar] and [Co]. Comparisons to normal-luminosity SNe Ia spectra at similar phases show a tentative trend between the width of the [Coiii] 11.888μm feature and the SN light-curve shape. Using non-LTE-multi-dimensional radiation hydro simulations and the observed electron capture elements, we constrain the mass of the exploding WD. The best-fitting model shows that SN 2022xkq is consistent with an off-center delayed-detonation explosion of a near-Chandrasekhar mass WD (MWD≈1.37M) of high central density (ρc≥ 2.0 × 109g cm−3) seen equator-on, which producedM(56Ni) =0.324MandM(58Ni) ≥0.06M. The observed line widths are consistent with the overall abundance distribution; and the narrow stable Ni lines indicate little to no mixing in the central regions, favoring central ignition of subsonic carbon burning followed by an off-center deflagration-to-detonation transition beginning at a single point. Additional observations may further constrain the physics revealing the presence of additional species including Cr and Mn. Our work demonstrates the power of using the full coverage of MIRI in combination with detailed modeling to elucidate the physics of SNe Ia at a level not previously possible.

     
    more » « less
  6. ABSTRACT

    NGC 5273 is a known optical and X-ray variable AGN. We analyse new and archival IR, optical, UV, and X-ray data in order to characterize its long-term variability from 2000–2022. At least one optical changing-look event occurred between 2011 and 2014 when the AGN changed from a Type 1.8/1.9 Seyfert to a Type 1. It then faded considerably at all wavelengths, followed by a dramatic but slow increase in UV/optical brightness between 2021 and 2022. Near-IR (NIR) spectra in 2022 show prominent broad Paschen lines that are absent in an archival spectrum from 2010, making NGC 5273 one of the few AGNs to be observed changing-look in the NIR. We propose that NGC 5273 underwent multiple changing-look events between 2000 and 2022 – starting as a Type 1.8/1.9, NGC 5273 changes-look to a Type 1 temporarily in 2002 and again in 2014, reverting back to a Type 1.8/1.9 by 2005 and 2017, respectively. In 2022, it is again a Type 1 Seyfert. We characterize the changing-look events and their connection to the dynamic accretion and radiative processes in NGC 5273 and propose that the variable luminosity (and thus, Eddington ratio) of the source is changing how the broad-line region (BLR) reprocesses the continuum emission.

     
    more » « less
  7. Abstract

    We present three new spectra of the nearby Type Ia supernova (SN Ia) 2011fe covering ≈480–850 days after maximum light and show that the ejecta undergoes a rapid ionization shift at ∼500 days after explosion. The prominent Feiiiemission lines at ≈4600 Å are replaced with Fei+Feiiblends at ∼4400 Å and ∼5400 Å. The ≈7300 Å feature, which is produced by [Feii]+[Niii] at ≲400 days after explosion, is replaced by broad (≈±15,000 km s−1) symmetric [Caii] emission. Models predict this ionization transition occurring ∼100 days later than what is observed, which we attribute to clumping in the ejecta. Finally, we use the nebular-phase spectra to test several proposed progenitor scenarios for SN 2011fe. Nondetections of H and He exclude nearby nondegenerate companions, [Oi] nondetections disfavor the violent merger of two white dwarfs, and the symmetric emission-line profiles favor a symmetric explosion.

     
    more » « less
  8. ABSTRACT

    We present extensive ultraviolet (UV) and optical photometric and optical spectroscopic follow-up of supernova (SN) 2021gno by the ‘Precision Observations of Infant Supernova Explosions’ (POISE) project, starting less than 2 d after the explosion. Given its intermediate luminosity, fast photometric evolution, and quick transition to the nebular phase with spectra dominated by [Ca ii] lines, SN 2021gno belongs to the small family of Calcium-rich transients. Moreover, it shows double-peaked light curves, a phenomenon shared with only four other Calcium-rich events. The projected distance from the centre of the host galaxy is not as large as other objects in this family. The initial optical light-curve peaks coincide with a very quick decline of the UV flux, indicating a fast initial cooling phase. Through hydrodynamical modelling of the bolometric light curve and line velocity evolution, we found that the observations are compatible with the explosion of a highly stripped massive star with an ejecta mass of $0.8\, M_\odot$ and a 56Ni mass of 0.024 M⊙. The initial cooling phase (first light-curve peak) is explained by the presence of an extended circumstellar material comprising ∼$10^{-2}\, {\rm M}_{\odot }$ with an extension of $1100\, R_{\odot }$. We discuss if hydrogen features are present in both maximum-light and nebular spectra, and their implications in terms of the proposed progenitor scenarios for Calcium-rich transients.

     
    more » « less
  9. Abstract

    We present multiwavelength time-series spectroscopy of SN 2013aa and SN 2017cbv, two Type Ia supernovae (SNe Ia) on the outskirts of the same host galaxy, NGC 5643. This work utilizes new nebular-phase near-infrared (NIR) spectra obtained by the Carnegie Supernova Project-II, in addition to previously published optical and NIR spectra. Using nebular-phase [Feii] lines in the optical and NIR, we examine the explosion kinematics and test the efficacy of several common emission-line-fitting techniques. The NIR [Feii] 1.644μm line provides the most robust velocity measurements against variations due to the choice of the fit method and line blending. The resulting effects on velocity measurements due to choosing different fit methods, initial fit parameters, continuum and line profile functions, and fit region boundaries were also investigated. The NIR [Feii] velocities yield the same radial shift direction as velocities measured using the optical [Feii]λ7155 line, but the sizes of the shifts are consistently and substantially lower, pointing to a potential issue in optical studies. The NIR [Feii] 1.644μm emission profile shows a lack of significant asymmetry in both SNe, and the observed low velocities elevate the importance for correcting for any velocity contribution from the host galaxy’s rotation. The low [Feii] velocities measured in the NIR at nebular phases disfavor progenitor scenarios in close double-degenerate systems for both SN 2013aa and SN 2017cbv. The time evolution of the NIR [Feii] 1.644μm line also indicates moderately high progenitor white dwarf central density and potentially high magnetic fields.

     
    more » « less
  10. ABSTRACT

    We present ultraviolet (UV) to near-infrared (NIR) observations and analysis of the nearby Type Ia supernova SN 2021fxy. Our observations include UV photometry from Swift/UVOT, UV spectroscopy from HST/STIS, and high-cadence optical photometry with the Swope 1-m telescope capturing intranight rises during the early light curve. Early B − V colours show SN 2021fxy is the first ‘shallow-silicon’ (SS) SN Ia to follow a red-to-blue evolution, compared to other SS objects which show blue colours from the earliest observations. Comparisons to other spectroscopically normal SNe Ia with HST UV spectra reveal SN 2021fxy is one of several SNe Ia with flux suppression in the mid-UV. These SNe also show blueshifted mid-UV spectral features and strong high-velocity Ca ii features. One possible origin of this mid-UV suppression is the increased effective opacity in the UV due to increased line blanketing from high velocity material, but differences in the explosion mechanism cannot be ruled out. Among SNe Ia with mid-UV suppression, SNe 2021fxy and 2017erp show substantial similarities in their optical properties despite belonging to different Branch subgroups, and UV flux differences of the same order as those found between SNe 2011fe and 2011by. Differential comparisons to multiple sets of synthetic SN Ia UV spectra reveal this UV flux difference likely originates from a luminosity difference between SNe 2021fxy and 2017erp, and not differing progenitor metallicities as suggested for SNe 2011by and 2011fe. These comparisons illustrate the complicated nature of UV spectral formation, and the need for more UV spectra to determine the physical source of SNe Ia UV diversity.

     
    more » « less