skip to main content


Search for: All records

Creators/Authors contains: "Awe, C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Testing the DAMA/LIBRA annual modulation result independently of dark matter particle and halo models has been a challenge for twenty years. Using the same target material, NaI(Tl), is required and presently two experiments, ANAIS-112 and COSINE-100, are running for such a goal. A precise knowledge of the detector response to nuclear recoils is mandatory because this is the most likely channel to find the dark matter signal. The light produced by nuclear recoils is quenched with respect to that produced by electrons by a factor that has to be measured experimentally. However, current quenching factor measurements in NaI(Tl) crystals disagree within the energy region of interest for dark matter searches. To disentangle whether this discrepancy is due to intrinsic differences in the light response among different NaI(Tl) crystals, or has its origin in unaccounted for systematic effects will be key in the comparison among the different experiments. We present measurements of the quenching factors for five small NaI(Tl) crystals performed in the same experimental setup to control systematics. Quenching factor results are compatible between crystals and no clear dependence with energy is observed from 10 to 80 keVnr. 
    more » « less
  2. null (Ed.)
  3. Abstract We present results of several measurements of CsI[Na] scintillation response to 3–60 keV energy nuclear recoils performed by the COHERENT collaboration using tagged neutron elastic scattering experiments and an endpoint technique. Earlier results, used to estimate the coherent elastic neutrino-nucleus scattering (CEvNS) event rate for the first observation of this process achieved by COHERENT at the Spallation Neutron Source (SNS), have been reassessed. We discuss corrections for the identified systematic effects and update the respective uncertainty values. The impact of updated results on future precision tests of CEvNS is estimated. We scrutinize potential systematic effects that could affect each measurement. In particular we confirm the response of the H11934-200 Hamamatsu photomultiplier tube (PMT) used for the measurements presented in this study to be linear in the relevant signal scale region. 
    more » « less
  4. Abstract We present the analysis and results of the first datasetcollected with the MARS neutron detectordeployed at the Oak Ridge NationalLaboratory Spallation Neutron Source (SNS) for the purpose ofmonitoring and characterizing the beam-related neutron (BRN) backgroundfor the COHERENT collaboration. MARS was positionednext to the COH-CsI coherent elastic neutrino-nucleus scattering detectorin the SNS basement corridor. This is the basement location ofclosest proximity to the SNS target and thus, of highest neutrino flux,but it is also well shielded from the BRN flux by infill concreteand gravel. These data show the detector registered roughly one BRN per day.Using MARS' measured detection efficiency, the incomingBRN flux is estimated to be 1.20 ± 0.56 neutrons/m^2/MWhfor neutron energies above ∼3.5 MeV and up to a few tens of MeV.We compare our results with previous BRN measurements in the SNS basement corridorreported by other neutron detectors. 
    more » « less