skip to main content


Search for: All records

Creators/Authors contains: "Axelsson, Magnus"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Gamma-ray bursts (GRBs) are the most powerful explosions in the universe. How efficiently the jet converts its energy to radiation is a long-standing problem, which is poorly constrained. The standard model invokes a relativistic fireball with a bright photosphere emission component. A definitive diagnosis of GRB radiation components and the measurement of GRB radiative efficiency require prompt emission and afterglow data, with high resolution and wide band coverage in time and energy. Here, we present a comprehensive temporal and spectral analysis of the TeV-emitting bright GRB 190114C. Its fluence is one of the highest for all the GRBs that have been detected so far, which allows us to perform a high-resolution study of the prompt emission spectral properties and their temporal evolutions, down to a timescale of about 0.1 s. We observe that each of the initial pulses has a thermal component contributing ∼20% of the total energy and that the corresponding temperature and inferred Lorentz factor of the photosphere evolve following broken power-law shapes. From the observation of the nonthermal spectra and the light curve, the onset of the afterglow corresponding to the deceleration of the fireball is considered to start at ∼6 s. By incorporating the thermal and nonthermal observations, as well as the photosphere and synchrotron radiative mechanisms, we can directly derive the fireball energy budget with little dependence on hypothetical parameters, measuring a ∼16% radiative efficiency for this GRB. With the fireball energy budget derived, the afterglow microphysics parameters can also be constrained directly from the data. 
    more » « less
  2. ABSTRACT

    The nature and geometry of the accretion flow in the low/hard state of black hole binaries is currently controversial. While most properties are generally explained in the truncated disc/hot inner flow model, the detection of a broad residual around the iron line argues for strong relativistic effects from an untruncated disc. Since spectral fitting alone is somewhat degenerate, we combine it with the additional information in the fast X-ray variability and perform a full spectral-timing analysis for NICER and NuSTAR data on a bright low/hard state of MAXI J1820+070. We model the variability with propagating mass accretion rate fluctuations by combining two separate current insights: that the hot flow is spectrally inhomogeneous, and that there is a discontinuous jump in viscous time-scale between the hot flow and variable disc. Our model naturally gives the double-humped shape of the power spectra, and the increasing high-frequency variability with energy in the second hump. Including reflection and reprocessing from a disc truncated at a few tens of gravitational radii quantitatively reproduces the switch in the lag-frequency spectra, from hard lagging soft at low frequencies (propagation through the variable flow) to the soft lagging hard at the high frequencies (reverberation from the hard X-ray continuum illuminating the disc). The viscous time-scale of the hot flow is derived from the model, and we show how this can be used to observationally test ideas about the origin of the jet.

     
    more » « less
  3. Abstract

    We examined the X-ray and radio spatial structure at the eastern ear of the W 50/SS 433 system to clarify a characteristic feature of the termination region of the SS 433 jet, and found that a hot spot ahead of the filament structure, which is considered to be a terminal shock of the SS 433 eastern jet, is clearly different from a single point source. The detailed spatial structure of the X-ray emission is finely resolved by Chandra observations, showing that there are two sources. By comparing the point-spread function of Chandra with the radial profiles of the two sources, the northern one is clearly more extended than a point source while the other seems marginally extended. Since there are no point sources nearby, the northern hot spot is likely a localized diffuse source. The northern hot spot spatially corresponds to the peak of the radio emission. Its spatial correlation is confirmed by an X-ray image using XMM-Newton. The X-ray spectra of the two sources are reproduced by a single absorbed power-law but the column density of the northern part is larger by a factor of ∼3. When a radiation model comprising synchrotron emission and inverse Compton emission is applied to the spectral energy distribution of the northern hot spot, the emission from this spot can be explained by the radiation from an electron population accelerated up to 30 TeV in a magnetic field strength of B ≲ 50 μG. This model also agrees with the radio and X-ray data, as well as the upper limit of gamma-ray emission obtained by the Fermi satellite.

     
    more » « less