skip to main content


Search for: All records

Creators/Authors contains: "Badman, S. T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The fast solar wind that fills the heliosphere originates from deep within regions of open magnetic field on the Sun called ‘coronal holes’. The energy source responsible for accelerating the plasma is widely debated; however, there is evidence that it is ultimately magnetic in nature, with candidate mechanisms including wave heating 1,2 and interchange reconnection 3–5 . The coronal magnetic field near the solar surface is structured on scales associated with ‘supergranulation’ convection cells, whereby descending flows create intense fields. The energy density in these ‘network’ magnetic field bundles is a candidate energy source for the wind. Here we report measurements of fast solar wind streams from the Parker Solar Probe (PSP) spacecraft 6 that provide strong evidence for the interchange reconnection mechanism. We show that the supergranulation structure at the coronal base remains imprinted in the near-Sun solar wind, resulting in asymmetric patches of magnetic ‘switchbacks’ 7,8 and bursty wind streams with power-law-like energetic ion spectra to beyond 100 keV. Computer simulations of interchange reconnection support key features of the observations, including the ion spectra. Important characteristics of interchange reconnection in the low corona are inferred from the data, including that the reconnection is collisionless and that the energy release rate is sufficient to power the fast wind. In this scenario, magnetic reconnection is continuous and the wind is driven by both the resulting plasma pressure and the radial Alfvénic flow bursts. 
    more » « less
    Free, publicly-accessible full text available June 8, 2024
  2. Abstract One of the striking observations from the Parker Solar Probe (PSP) spacecraft is the prevalence in the inner heliosphere of large amplitude, Alfvénic magnetic field reversals termed switchbacks . These δ B R / B ∼  ( 1 ) fluctuations occur over a range of timescales and in patches separated by intervals of quiet, radial magnetic field. We use measurements from PSP to demonstrate that patches of switchbacks are localized within the extensions of plasma structures originating at the base of the corona. These structures are characterized by an increase in alpha particle abundance, Mach number, plasma β and pressure, and by depletions in the magnetic field magnitude and electron temperature. These intervals are in pressure balance, implying stationary spatial structure, and the field depressions are consistent with overexpanded flux tubes. The structures are asymmetric in Carrington longitude with a steeper leading edge and a small (∼1°) edge of hotter plasma and enhanced magnetic field fluctuations. Some structures contain suprathermal ions to ∼85 keV that we argue are the energetic tail of the solar wind alpha population. The structures are separated in longitude by angular scales associated with supergranulation. This suggests that these switchbacks originate near the leading edge of the diverging magnetic field funnels associated with the network magnetic field—the primary wind sources. We propose an origin of the magnetic field switchbacks, hot plasma and suprathermals, alpha particles in interchange reconnection events just above the solar transition region and our measurements represent the extended regions of a turbulent outflow exhaust. 
    more » « less
  3. null (Ed.)
  4. Abstract

    Drawing connections between heliospheric spacecraft and solar wind sources is a vital step in understanding the evolution of the solar corona into the solar wind and contextualizing in situ timeseries. Furthermore, making advanced predictions of this linkage for ongoing heliospheric missions, such as Parker Solar Probe (Parker), is necessary for achieving useful coordinated remote observations and maximizing scientific return. The general procedure for estimating such connectivity is straightforward (i.e., magnetic field line tracing in a coronal model) but validating the resulting estimates is difficult due to the lack of an independent ground truth and limited model constraints. In its most recent orbits, Parker has reached perihelia of 13.3Rand moreover travels extremely fast prograde relative to the solar surface, covering over 120° longitude in 3 days. Here we present footpoint predictions and subsequent validation efforts for Parker Encounter 10, the first of the 13.3Rorbits, which occurred in November 2021. We show that the longitudinal dependence of in situ plasma data from these novel orbits provides a powerful method of footpoint validation. With reference to other encounters, we also illustrate that the conditions under which source mapping is most accurate for near‐ecliptic spacecraft (such as Parker) occur when solar activity is low, but also require that the heliospheric current sheet is strongly warped by mid‐latitude or equatorial coronal holes. Lastly, we comment on the large‐scale coronal structure implied by the Encounter 10 mapping, highlighting an empirical equatorial cut of the Alfvèn surface consisting of localized protrusions above unipolar magnetic separatrices.

     
    more » « less