skip to main content


Search for: All records

Creators/Authors contains: "Bailey, I."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Pliocene Epoch (∼5.3–2.6 million years ago, Ma) was characterized by a warmer than present climate with smaller Northern Hemisphere ice sheets, and offers an example of a climate system in long‐term equilibrium with current or predicted near‐future atmospheric CO2concentrations (pCO2). A long‐term trend of ice‐sheet expansion led to more pronounced glacial (cold) stages by the end of the Pliocene (∼2.6 Ma), known as the “intensification of Northern Hemisphere Glaciation” (iNHG). We assessed the spatial and temporal variability of ocean temperatures and ice‐volume indicators through the late Pliocene and early Pleistocene (from 3.3 to 2.4 Ma) to determine the character of this climate transition. We identified asynchronous shifts in long‐term means and the pacing and amplitude of shorter‐term climate variability, between regions and between climate proxies. Early changes in Antarctic glaciation and Southern Hemisphere ocean properties occurred even during the mid‐Piacenzian warm period (∼3.264–3.025 Ma) which has been used as an analog for future warming. Increased climate variability subsequently developed alongside signatures of larger Northern Hemisphere ice sheets (iNHG). Yet, some regions of the ocean felt no impact of iNHG, particularly in lower latitudes. Our analysis has demonstrated the complex, non‐uniform and globally asynchronous nature of climate changes associated with the iNHG. Shifting ocean gateways and ocean circulation changes may have pre‐conditioned the later evolution of ice sheets with falling atmosphericpCO2. Further development of high‐resolution, multi‐proxy reconstructions of climate is required so that the full potential of the rich and detailed geological records can be realized.

     
    more » « less
  2. Abstract

    The Late Cretaceous–Early Paleogene is the most recent period in Earth history that experienced sustained global greenhouse warmth on multimillion year timescales. Yet, knowledge of ambient climate conditions and the complex interplay between various forcing mechanisms are still poorly constrained. Here we present a 14.75 million‐year‐long, high‐resolution, orbitally tuned record of paired climate change and carbon‐cycling for this enigmatic period (~67–52 Ma), which we compare to an up‐to‐date compilation of atmosphericpCO2records. Our climate and carbon‐cycling records, which are the highest resolution stratigraphically complete records to be constructed from a single marine site in the Atlantic Ocean, feature all major transient warming events (termed “hyperthermals”) known from this time period. We identify eccentricity as the dominant pacemaker of climate and the carbon cycle throughout the Late Maastrichtian to Early Eocene, through the modulation of precession. On average, changes in the carbon cycle lagged changes in climate by ~23,000 years at the long eccentricity (405,000‐year) band, and by ~3,000–4,500 years at the short eccentricity (100,000‐year) band, suggesting that light carbon was released as a positive feedback to warming induced by orbital forcing. Our new record places all known hyperthermals of the Late Maastrichtian–Early Eocene into temporal context with regards to evolving ambient climate of the time. We constrain potential carbon cycle influences of Large Igneous Province volcanism associated with the Deccan Traps and North Atlantic Igneous Province, as well as the sensitivity of climate and the carbon‐cycle to the 2.4 million‐year‐long eccentricity cycle.

     
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)