skip to main content


Search for: All records

Creators/Authors contains: "Ballance, C. P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The detection of a gravitational-wave signal and subsequent electromagnetic transient from a neutron star merger in 2017 is consistent with expectations of neutron star mergers as anr-process element production site. Within the first few days post-merger, the kilonova spectra are consistent with a blackbody illuminating a mix of heavy,r-process elements. With increasing time, the kilonova transitions to the non-LTE regime where the level populations and ionization balance are determined by both collisional and photoprocesses. Detailed cross section data for electron-impact processes involving the relevant species are often not available. In such circumstances, it is reasonable to use approximate methods as baseline data for use in spectral modeling, and it is useful to evaluate the accuracy of such methods against more sophisticated collision calculations when possible. We describe new calculations of the electron-impact excitation cross sections of PtiiIiusing the DARCR-matrix codes. Using collisional-radiative models, we show that, at plasma conditions expected in kilonovae, the expressions of van Regemorter and Axelrod are insufficient for producing electron-impact excitation data for complex, heavy species such as the low charge states of Pt. Through comparisons with data generated with the relativistic distorted wave approach, as implemented in the Flexible Atomic Code, we show the distorted wave method produces cross section data that, when incorporated into spectral models, predicts strong spectral feature distributions similar in intensity to those from models built on data computed with theR-matrix approach for the considered ions and plasma conditions.

     
    more » « less
  2. ABSTRACT Neutron binary star mergers have long been proposed as sufficiently neutron rich environments that could support the synthesis of rapid neutron capture elements (r-process elements) such as gold. However, the literature reveals that beyond neutral and singly ionized systems, there is an incompleteness of atomic data for the remaining ion stages of importance for mergers. In this work, we report on relativistic atomic structure calculations for Au i–Au iii using the grasp0 codes. Comparisons to calculations using the Flexible Atomic Code suggest uncertainties on average of 9.2 per cent, 5.7 per cent, and 3.8 per cent for Au i–Au iii level energies. Agreement around ∼50 per cent is achieved between our computed A-values and those in the literature, where available. Using the grasp0 structure of Au i, we calculated electron-impact excitation rate coefficients and use a collisional-radiative model to explore the excitation dynamics and line ratio diagnostics possible in neutron star merger environments. We find that proper accounting of metastable populations is critical for extracting useful information from ultraviolet–visible line ratio diagnostics of Au i. As a test of our data, we applied our electron-impact data to study a gold hollow cathode spectrum in the literature and diagnosed the plasma conditions as Te = 3.1 ± 1.2 eV and $n_\textrm {e} = 2.7^{+1.3}_{-0.9}\times 10^{13}$ cm−3. 
    more » « less
  3. null (Ed.)