skip to main content


Search for: All records

Creators/Authors contains: "Ballen, Cissy J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Understanding the relationship between science and society is an objective of science education and is included as a core competency in the AAAS Vision and Change guidelines for biology education. However, traditional undergraduate biology instruction emphasizes scientific practice and generally avoids potentially controversial issues at the intersection of biology and society. By including these topics in biology coursework, instructors can challenge damaging ideologies and systemic inequalities that have influenced science, such as biological essentialism and health disparities. Specifically, an ideologically aware curriculum highlights how ideologies and paradigms shape our biological knowledge base and the application of that knowledge. Ideologically aware lessons emphasize the relationship between science and society with an aim to create more transparent, scientifically accurate, and inclusive postsecondary biology classrooms. Here we expand upon our ideologically aware curriculum with a new activity that challenges undergraduate biology students to consider the impacts of healthcare disparities. This lesson allows instructors to directly address systemic inequalities and allows students to connect biomedical sciences to real-world issues. Implementing an ideologically aware curriculum enables students to challenge prevailing worldviews and better address societal problems that lead to exclusion and oppression.

     
    more » « less
  2. Abstract

    We conducted a meta-analysis to test the impacts of one active learning teaching strategy, group work, on student performance by calculating estimates across 91 studies from 53 articles. Our overall estimate indicates that the implementation of group work in biology classrooms increased student performance by 1.00 standard deviation, which we contextualized as a change greater than one letter grade. Moderator analyses revealed that this increase in performance held across all group sizes, class sizes, biology and life science majors and nonmajors, and whether the groups were assigned by the instructor. However, we did not observe increased performance in graduate level courses, in cases where group work was incorporated for only part of the course term (e.g., less than a semester or quarter) or when the group work was not graded. These results demonstrate that group work leads to impressive boosts in student performance and underscores the value of studying specific active learning strategies.

     
    more » « less
  3. Abstract

    Efforts to discourage academic misconduct in online learning environments frequently include the use of remote proctoring services. While these services are relatively commonplace in undergraduate science courses, there are open questions about students’ remote assessment environments and their concerns related to remote proctoring services. Using a survey distributed to 11 undergraduate science courses engaging in remote instruction at three American, public, research-focused institutions during the spring of 2021, we found that the majority of undergraduate students reported testing in suboptimal environments. Students’ concerns about remote proctoring services were closely tied to technological difficulties, fear of being wrongfully accused of cheating, and negative impacts on mental health. Our results suggest that remote proctoring services can create and perpetuate inequitable assessment environments for students, and additional research is required to understand the efficacy of their intended purpose to prevent cheating. We also advocate for continued conversations about the broader social and institutional conditions that can pressure students into cheating. While changes to academic culture are difficult, these conversations are necessary for higher education to remain relevant in an increasingly technological world.

     
    more » « less
  4. Abstract Background

    We used an opportunity gap framework to analyze the pathways through which students enter into and depart from science, technology, engineering, and mathematics (STEM) degrees in an R1 higher education institution and to better understand the demographic disparities in STEM degree attainment.

    Results

    We found disparities in 6-year STEM graduation rates on the basis of gender, race/ethnicity, and parental education level. Using mediation analysis, we showed that the gender disparity in STEM degree attainment was explained by disparities in aspiration: a gender disparity in students’ intent to pursue STEM at the beginning of college; women were less likely to graduate with STEM degrees because they were less likely to intend to pursue STEM degrees. However, disparities in STEM degree attainment across race/ethnicities and parental education level were largely explained by disparities in attrition: persons excluded because of their ethnicity or race (PEERs) and first generation students were less likely to graduate with STEM degrees due to fewer academic opportunities provided prior to college (estimated using college entrance exams scores) and more academic challenges during college as captured by first year GPAs.

    Conclusions

    Our results reinforce the idea that patterns of departure from STEM pathways differ among marginalized groups. To promote and retain students in STEM, it is critical that we understand these differing patterns and consider structural efforts to support students at different stages in their education.

     
    more » « less
  5. Understanding the relationship between science and society is included as a core competency for biology students in the United States. However, traditional undergraduate biology instruction emphasizes scientific practice and generally avoids potentially controversial issues at the intersection of science and society, such as representation in STEM, historical unethical research experiments, biology of sex and gender, and environmental justice. As calls grow to highlight this core competency, it is critical we investigate the impact of including these topics in undergraduate biology education. Here, we implemented a semester-long ideological awareness curriculum that emphasized biases, stereotypes, and assumptions that have shaped historical and contemporary science. We taught this curriculum to one section of a non-majors introductory biology course and compared the outcomes to a section of the same course taught using traditional biology content (hereafter the ‘traditional’ section) that did not emphasize societal topics. Both sections of students created concept maps for their final exam, which we coded for ‘society’ and ‘biology’ content. We then assessed (1) the amount of societal content included in the concept maps, and (2) which societal topics were mentioned in each section. We found that students in the ideologically aware section included more societal content in their concept maps than the students in the traditional section. Students exposed to the ideological awareness modules often mentioned the topics covered in those modules, whereas students in the traditional section most commonly mentioned faulty scientific information such as pseudoscience or non-credible research, which was emphasized in the first chapter of the required text-book for both sections. Our results show students who were not engaged in activities about ideological awareness in biology had fewer notions of how society impacts science at the end of the semester. These findings highlight the importance of intentionally teaching students the bidirectional impacts of science and society. 
    more » « less
    Free, publicly-accessible full text available July 27, 2024
  6. Bolger, Molly (Ed.)
    Traditional biology curricula depict science as an objective field, overlooking the important influence that human values and biases have on what is studied and who can be a scientist. We can work to address this shortcoming by incorporating ideological awareness into the curriculum, which is an understanding of biases, stereotypes, and assumptions that shape contemporary and historical science. We surveyed a national sample of lower-level biology instructors to determine 1) why it is important for students to learn science, 2) the perceived educational value of ideological awareness in the classroom, and 3) hesitancies associated with ideological awareness implementation. We found that most instructors reported “understanding the world” as the main goal of science education. Despite the perceived value of ideological awareness, such as increasing student engagement and dispelling misconceptions, instructors were hesitant to implement ideological awareness modules due to potential personal and professional consequences. 
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  7. Georgiou, H. (Ed.)
    Addressing the challenges facing society and the world will require an understanding of the biases and limitations of science. To combat these challenges, here, we advocate for the incorporation of ideologically aware (IA) material into postsecondary biology curricula. IA materials communicate to students how biases, assumptions, and stereotypes inform approaches to and outcomes of science. By engaging with IA materials, student awareness of the impact of science on social problems is expected to increase. In this paper, we situate this IA approach with two other pedagogical approaches that incorporate societally relevant content: culturally relevant pedagogy and socioscientific issues. We then call for research to test ways of supporting instructor implementation of IA material, to evaluate the impact of IA topics on student academic and sociopsychological outcomes, and to explore how to implement IA material in different cultural and social settings. Throughout, we focus on IA topics in the context of postsecondary biology classrooms but encourage the incorporation of IA materials across scientific disciplines and educational settings. Our hope is that greater inclusion of IA materials will create more transparent, scientifically accurate, and inclusive classrooms. 
    more » « less
  8. Nayyar, Anand (Ed.)

    The coronavirus disease 2019 (COVID-19) pandemic has led to a reimagining of many aspects of higher education, including how instructors interact with their students and how they encourage student participation. Text-based chatting during synchronous remote instruction is a simple form of student-student and student-instructor interaction. The importance of student participation has been documented, as have clear disparities in participation between those well-represented and those under-represented in science disciplines. Thus, we conducted an investigation into who is texting, what students are texting, and how these texts align with course content. We focused on two sections of a large-enrollment, introductory biology class offered remotely during Fall 2020. Using an analysis of in-class chatting, in combination with student survey responses, we find that text-based chatting suggests not only a high level of student engagement, but a type of participation that is disproportionately favored by women. Given the multiple lines of evidence indicating that women typically under-participate in their science courses, any vehicle that counters this trend merits further exploration. We conclude with suggestions for further research, and ideas for carrying forward text-based chatting in the post-COVID-19, in-person classroom.

     
    more » « less
  9. ABSTRACT Test anxiety is a common experience shared by college students and is typically investigated in the context of traditional, face-to-face courses. However, the onset of the COVID-19 pandemic resulted in the closure of universities, and many students had to rapidly shift to and balance the challenges of online learning. We investigated how the shift to online learning during the pandemic impacted trait (habitual) and state (momentary) test anxiety and whether there was variation across different demographic groups already vulnerable to performance gaps in science, technology, engineering, and mathematics (STEM) courses. Quantitative analyses revealed that trait and state test anxiety were lower in Spring 2020 (COVID semester) than in Spring 2019 and were higher overall in women than men. We did not find a difference in either trait or state anxiety in first-generation students or among persons excluded because of ethnicity or race. Qualitative analyses revealed that student priorities shifted away from coursework during Spring 2020. While students initially perceived the shift to online learning as beneficial, 1 month after the shift, students reported more difficulties studying and completing their coursework. Taken together, these results are the first to compare reports of test anxiety during a traditional, undisrupted semester to the semester where COVID-19 forced a sudden transition online. 
    more » « less
  10. To achieve meaningful learning experiences in online classrooms, students must become self-regulated learners through the development of effective study habits. Currently, there is no set of recommendations to promote study habits in online biology learning environments.

     
    more » « less