skip to main content


Search for: All records

Creators/Authors contains: "Bandura, Kevin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Foreground mitigation is critical to all next-generation radio interferometers that target cosmology using the redshifted neutral hydrogen 21 cm emission line. Attempts to remove this foreground emission have led to new analysis techniques as well as new developments in hardware specifically dedicated to instrument beam and gain calibration, including stabilized signal injection into the interferometric array and drone-based platforms for beam mapping. The radio calibration sources currently used in the literature are broad-band incoherent sources that can only be detected as excess power and with no direct sensitivity to phase information. In this paper, we describe a digital radio source which uses Global Positioning Satellite (GPS) derived time stamps to form a deterministic signal that can be broadcast from an aerial platform. A copy of this source can be deployed locally at the instrument correlator such that the received signal from the aerial platform can be correlated with the local copy, and the resulting correlation can be measured in both amplitude and phase for each interferometric element. We define the requirements for such a source, describe an initial implementation and verification of this source using commercial Software Defined Radio boards, and present beam map slices from antenna range measurements using the commercial boards. We found that the commercial board did not meet all requirements, so we also suggest future directions using a more sophisticated chipset. 
    more » « less
  2. Zmuidzinas, Jonas ; Gao, Jian-Rong (Ed.)
  3. Abstract

    We present a detection of 21 cm emission from large-scale structure (LSS) between redshift 0.78 and 1.43 made with the Canadian Hydrogen Intensity Mapping Experiment. Radio observations acquired over 102 nights are used to construct maps that are foreground filtered and stacked on the angular and spectral locations of luminous red galaxies (LRGs), emission-line galaxies (ELGs), and quasars (QSOs) from the eBOSS clustering catalogs. We find decisive evidence for a detection when stacking on all three tracers of LSS, with the logarithm of the Bayes factor equal to 18.9 (LRG), 10.8 (ELG), and 56.3 (QSO). An alternative frequentist interpretation, based on the likelihood ratio test, yields a detection significance of 7.1σ(LRG), 5.7σ(ELG), and 11.1σ(QSO). These are the first 21 cm intensity mapping measurements made with an interferometer. We constrain the effective clustering amplitude of neutral hydrogen (Hi), defined asHI103ΩHIbHI+fμ2, where ΩHiis the cosmic abundance of Hi,bHiis the linear bias of Hi, and 〈fμ2〉 = 0.552 encodes the effect of redshift-space distortions at linear order. We findHI=1.510.97+3.60for LRGs (z= 0.84),HI=6.763.79+9.04for ELGs (z= 0.96), andHI=1.680.67+1.10for QSOs (z= 1.20), with constraints limited by modeling uncertainties at nonlinear scales. We are also sensitive to bias in the spectroscopic redshifts of each tracer, and we find a nonzero bias Δv= − 66 ± 20 km s−1for the QSOs. We split the QSO catalog into three redshift bins and have a decisive detection in each, with the upper bin atz= 1.30 producing the highest-redshift 21 cm intensity mapping measurement thus far.

     
    more » « less
  4. Abstract

    We present a beam pattern measurement of the Canadian Hydrogen Intensity Mapping Experiment (CHIME) made using the Sun as a calibration source. As CHIME is a pure drift-scan instrument, we rely on the seasonal north–south motion of the Sun to probe the beam at different elevations. This semiannual range in elevation, combined with the radio brightness of the Sun, enables a beam measurement that spans ∼7200 square degrees on the sky without the need to move the telescope. We take advantage of observations made near solar minimum to minimize the impact of solar variability, which is observed to be <10% in intensity over the observation period. The resulting data set is highly complementary to other CHIME beam measurements—both in terms of angular coverage and systematics—and plays an important role in the ongoing program to characterize the CHIME primary beam.

     
    more » « less
  5. Abstract The Canadian Hydrogen Intensity Mapping Experiment (CHIME)/FRB experiment has detected thousands of fast radio bursts (FRBs) due to its sensitivity and wide field of view; however, its low angular resolution prevents it from localizing events to their host galaxies. Very long baseline interferometry (VLBI), triggered by FRB detections from CHIME/FRB will solve the challenge of localization for non-repeating events. Using a refurbished 10 m radio dish at the Algonquin Radio Observatory located in Ontario Canada, we developed a testbed for a VLBI experiment with a theoretical λ / D ≲ 30 mas. We provide an overview of the 10 m system and describe its refurbishment, the data acquisition, and a procedure for fringe fitting that simultaneously estimates the geometric delay used for localization and the dispersive delay from the ionosphere. Using single pulses from the Crab pulsar, we validate the system and localization procedure, and analyze the clock stability between sites, which is critical for coherently delay referencing an FRB event. We find a localization of ∼200 mas is possible with the performance of the current system (single-baseline). Furthermore, for sources with insufficient signal or restricted wideband to simultaneously measure both geometric and ionospheric delays, we show that the differential ionospheric contribution between the two sites must be measured to a precision of 1 × 10 −8 pc cm −3 to provide a reasonable localization from a detection in the 400–800 MHz band. Finally we show detection of an FRB observed simultaneously in the CHIME and the Algonquin 10 m telescope, the first non-repeating FRB in this long baseline. This project serves as a testbed for the forthcoming CHIME/FRB Outriggers project. 
    more » « less
  6. Abstract

    We present the discovery of 25 new repeating fast radio burst (FRB) sources found among CHIME/FRB events detected between 2019 September 30 and 2021 May 1. The sources were found using a new clustering algorithm that looks for multiple events colocated on the sky having similar dispersion measures (DMs). The new repeaters have DMs ranging from ∼220 to ∼1700 pc cm−3, and include sources having exhibited as few as two bursts to as many as twelve. We report a statistically significant difference in both the DM and extragalactic DM (eDM) distributions between repeating and apparently nonrepeating sources, with repeaters having a lower mean DM and eDM, and we discuss the implications. We find no clear bimodality between the repetition rates of repeaters and upper limits on repetition from apparently nonrepeating sources after correcting for sensitivity and exposure effects, although some active repeating sources stand out as anomalous. We measure the repeater fraction over time and find that it tends to an equilibrium of2.62.6+2.9% over our total time-on-sky thus far. We also report on 14 more sources, which are promising repeating FRB candidates and which merit follow-up observations for confirmation.

     
    more » « less
  7. Abstract

    The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is a drift scan radio telescope operating across the 400–800 MHz band. CHIME is located at the Dominion Radio Astrophysical Observatory near Penticton, BC, Canada. The instrument is designed to map neutral hydrogen over the redshift range 0.8–2.5 to constrain the expansion history of the universe. This goal drives the design features of the instrument. CHIME consists of four parallel cylindrical reflectors, oriented north–south, each 100 m × 20 m and outfitted with a 256-element dual-polarization linear feed array. CHIME observes a two-degree-wide stripe covering the entire meridian at any given moment, observing three-quarters of the sky every day owing to Earth’s rotation. An FX correlator utilizes field-programmable gate arrays and graphics processing units to digitize and correlate the signals, with different correlation products generated for cosmological, fast radio burst, pulsar, very long baseline interferometry, and 21 cm absorber back ends. For the cosmology back end, theNfeed2correlation matrix is formed for 1024 frequency channels across the band every 31 ms. A data receiver system applies calibration and flagging and, for our primary cosmological data product, stacks redundant baselines and integrates for 10 s. We present an overview of the instrument, its performance metrics based on the first 3 yr of science data, and we describe the current progress in characterizing CHIME’s primary beam response. We also present maps of the sky derived from CHIME data; we are using versions of these maps for a cosmological stacking analysis, as well as for investigation of Galactic foregrounds.

     
    more » « less