skip to main content


Search for: All records

Creators/Authors contains: "Bane, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Between Florida and Cape Hatteras, North Carolina, the Gulf Stream carries warm, salty waters poleward along the continental slope. This strong current abuts the edge of the South Atlantic Bight (SAB) continental shelf and is thought to influence exchange of waters between the open ocean and the shelf. Observations from a pair of instruments deployed for 19 months in the northern SAB are used here to examine the processes by which the Gulf Stream can impact this exchange. The instrument deployed on the SAB shelf edge shows that the time‐averaged along‐slope flow is surface‐intensified with only few flow reversals at low frequencies (>40‐day period). Time‐averaged cross‐slope flow is onto the SAB shelf in a lower layer and off‐shelf above. Consistent with Ekman dynamics, the magnitude of lower‐layer on‐shelf flow is correlated with the along‐slope velocity, which is in turn controlled by the position and/or transport of the Gulf Stream that flows poleward along the SAB continental slope. In the frequency band associated with downstream‐propagating wave‐like meanders of the Gulf Stream jet (2‐15 day period), currents at the shelf‐edge are characterized by surface‐intensified flow in the along‐ and cross‐slope directions. Estimates of maximum upwelling velocities associated with cyclonic frontal eddies between meander crests occasionally reach 100 m/day.

     
    more » « less
  2. Abstract

    The Northwest Atlantic, which has exhibited evidence of accelerated warming compared to the global ocean, also experienced several notable marine heatwaves (MHWs) over the last decade. We analyze spatiotemporal patterns of surface and subsurface temperature structure across the Northwest Atlantic continental shelf and slope to assess the influences of atmospheric and oceanic processes on ocean temperatures. Here we focus on MHWs from 2015/16 and examine their physical drivers using observational and reanalysis products. We find that a combination of jet stream latitudinal position and ocean advection, mainly due to warm core rings shed by the Gulf Stream, plays a role in MHW development. While both atmospheric and oceanic drivers can lead to MHWs they have different temperature signatures with each affecting the vertical structure differently and horizontal spatial patterns of a MHW. Northwest Atlantic MHWs have significant socio-economic impacts and affect commercially important species such as squid and lobster.

     
    more » « less
  3. Free, publicly-accessible full text available September 1, 2024
  4. Abstract Liquid xenon time projection chambers are promising detectors to search for neutrinoless double beta decay (0 $$\nu \beta \beta $$ ν β β ), due to their response uniformity, monolithic sensitive volume, scalability to large target masses, and suitability for extremely low background operations. The nEXO collaboration has designed a tonne-scale time projection chamber that aims to search for 0 $$\nu \beta \beta $$ ν β β of $$^{136}$$ 136 Xe with projected half-life sensitivity of $$1.35\times 10^{28}$$ 1.35 × 10 28  yr. To reach this sensitivity, the design goal for nEXO is $$\le $$ ≤ 1% energy resolution at the decay Q -value ( $$2458.07\pm 0.31$$ 2458.07 ± 0.31  keV). Reaching this resolution requires the efficient collection of both the ionization and scintillation produced in the detector. The nEXO design employs Silicon Photo-Multipliers (SiPMs) to detect the vacuum ultra-violet, 175 nm scintillation light of liquid xenon. This paper reports on the characterization of the newest vacuum ultra-violet sensitive Fondazione Bruno Kessler VUVHD3 SiPMs specifically designed for nEXO, as well as new measurements on new test samples of previously characterised Hamamatsu VUV4 Multi Pixel Photon Counters (MPPCs). Various SiPM and MPPC parameters, such as dark noise, gain, direct crosstalk, correlated avalanches and photon detection efficiency were measured as a function of the applied over voltage and wavelength at liquid xenon temperature (163 K). The results from this study are used to provide updated estimates of the achievable energy resolution at the decay Q -value for the nEXO design. 
    more » « less
  5. null (Ed.)