skip to main content


Search for: All records

Creators/Authors contains: "Banu, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    The ground state half-lives of 69Ge, 73Se, 83Sr, 63Zn, and the half-life of the 1/2− isomer in 85Sr have been measured with high precision using the photoactivation technique at an unconventional bremsstrahlung facility that features a repurposed medical electron linear accelerator. The γ-ray activity was counted over about 6 half-lives with a high-purity germanium detector, enclosed into an ultra low-background lead shield. The measured half-lives are: T1/2(69Ge) = 38.82 ± 0.07 (stat) ± 0.06 (sys) h; T1/2(73Se) = 7.18 ± 0.02 (stat) ± 0.004 (sys) h; T1/2(83Sr) = 31.87 ± 1.16 (stat) ± 0.42 (sys) h; T1/2(85mSr) = 68.24 ± 0.84 (stat) ± 0.11 (sys) min; T1/2(63Zn) = 38.71 ± 0.25 (stat) ± 0.10 (sys) min. These high-precision half-life measurements will contribute to a more accurate determination of corresponding ground-state photoneutron reaction rates, which are part of a broader effort of constraining statistical nuclear models needed to calculate stellar nuclear reaction rates relevant for the astrophysical p-process nucleosynthesis. 
    more » « less
  2. null (Ed.)
    The ground state half-lives of 69Ge, 73Se, 83Sr, 63Zn, and the half-life of the 1/2− isomer in 85Sr have been measured with high precision using the photoactivation technique at an unconventional bremsstrahlung facility that features a repurposed medical electron linear accelerator. The γ-ray activity was counted over about 6 half-lives with a high-purity germanium detector, enclosed into an ultra low-background lead shield. The measured half-lives are: T1/2(69Ge) = 38.82 ± 0.07 (stat) ± 0.06 (sys)h; T1/2(73Se) = 7.18 ± 0.02 (stat) ± 0.004 (sys) h; T1/2(83Sr) = 31.87 ± 1.16 (stat) ± 0.42 (sys) h; T1/2(85mSr) = 68.24 ± 0.84(stat) ± 0.11 (sys) min; T1/2(63Zn) = 38.71 ± 0.25 (stat) ± 0.10 (sys) min. These high-precision half-life measurements will contribute to a more accurate determination of corresponding ground-state photoneutron reaction rates, which are part of a broader effort of constraining statistical nuclear models needed to calculate stellar nuclear reaction rates relevant for the astrophysical p-process nucleosynthesis. 
    more » « less
  3. null (Ed.)
  4. Abstract

    Nuclear astrophysics is a field at the intersection of nuclear physics and astrophysics, which seeks to understand the nuclear engines of astronomical objects and the origin of the chemical elements. This white paper summarizes progress and status of the field, the new open questions that have emerged, and the tremendous scientific opportunities that have opened up with major advances in capabilities across an ever growing number of disciplines and subfields that need to be integrated. We take a holistic view of the field discussing the unique challenges and opportunities in nuclear astrophysics in regards to science, diversity, education, and the interdisciplinarity and breadth of the field. Clearly nuclear astrophysics is a dynamic field with a bright future that is entering a new era of discovery opportunities.

     
    more » « less