skip to main content


Search for: All records

Creators/Authors contains: "Bao, Han"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Spatial data are ubiquitous and have transformed decision-making in many critical domains, including public health, agriculture, transportation, etc. While recent advances in machine learning offer promising ways to harness massive spatial datasets (e.g., satellite imagery), spatial heterogeneity -- a fundamental property of spatial data -- poses a major challenge as data distributions or generative processes often vary over space. Recent studies targeting this difficult problem either require a known space-partitioning as the input, or can only support limited special cases (e.g., binary classification). Moreover, heterogeneity-pattern learned by these methods are locked to the locations of the training samples, and cannot be applied to new locations. We propose a statistically-guided framework to adaptively partition data in space during training using distribution-driven optimization and transform a deep learning model (of user's choice) into a heterogeneity-aware architecture. We also propose a spatial moderator to generalize learned patterns to new test regions. Experiment results on real-world datasets show that the framework can effectively capture footprints of heterogeneity and substantially improve prediction performances.

     
    more » « less
  2. Estimating human mobility responses to the large-scale spreading of the COVID-19 pandemic is crucial, since its significance guides policymakers to give Non-pharmaceutical Interventions, such as closure or reopening of businesses. It is challenging to model due to complex social contexts and limited training data. Recently, we proposed a conditional generative adversarial network (COVID-GAN) to estimate human mobility response under a set of social and policy conditions integrated from multiple data sources. Although COVID-GAN achieves a good average estimation accuracy under real-world conditions, it produces higher errors in certain regions due to the presence of spatial heterogeneity and outliers. To address these issues, in this article, we extend our prior work by introducing a new spatio-temporal deep generative model, namely, COVID-GAN+. COVID-GAN+ deals with the spatial heterogeneity issue by introducing a new spatial feature layer that utilizes the local Moran statistic to model the spatial heterogeneity strength in the data. In addition, we redesign the training objective to learn the estimated mobility changes from historical average levels to mitigate the effects of spatial outliers. We perform comprehensive evaluations using urban mobility data derived from cell phone records and census data. Results show that COVID-GAN+ can better approximate real-world human mobility responses than prior methods, including COVID-GAN. 
    more » « less
  3. Fairness related to locations (i.e., "where") is critical for the use of machine learning in a variety of societal domains involving spatial datasets (e.g., agriculture, disaster response, urban planning). Spatial biases incurred by learning, if left unattended, may cause or exacerbate unfair distribution of resources, social division, spatial disparity, etc. The goal of this work is to develop statistically-robust formulations and model-agnostic learning strategies to understand and promote spatial fairness. The problem is challenging as locations are often from continuous spaces with no well-defined categories (e.g., gender), and statistical conclusions from spatial data are fragile to changes in spatial partitionings and scales. Existing studies in fairness-driven learning have generated valuable insights related to non-spatial factors including race, gender, education level, etc., but research to mitigate location-related biases still remains in its infancy, leaving the main challenges unaddressed. To bridge the gap, we first propose a robust space-as-distribution (SPAD) representation of spatial fairness to reduce statistical sensitivity related to partitioning and scales in continuous space. Furthermore, we propose a new SPAD-based stochastic strategy to efficiently optimize over an extensive distribution of fairness criteria, and a bi-level training framework to enforce fairness via adaptive adjustment of priorities among locations. Experiments on real-world crop monitoring show that SPAD can effectively reduce sensitivity in fairness evaluation and the stochastic bi-level training framework can greatly improve the fairness. 
    more » « less