skip to main content


Search for: All records

Creators/Authors contains: "Barlow, Brad N."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Hot subdwarf B stars are core-helium burning objects that were once red giants stripped of their outer H envelopes due to binary interactions. Many exhibit pulsations that can be used to determine fundamental stellar parameters like mass and radius. High-cadence TESS photometry of the sdB star BPM 36430 revealed it to be a hybrid-mode pulsator showing several g-mode pulsations and a single strong p-mode oscillation. The latter is likely a radial mode oscillation, given its period (342 s) and high photometric amplitude (2%). Using time-series spectroscopy from the Goodman spectrograph on the 4.1 m SOAR telescope, we detect a sinusoidal radial velocity variation with a semi-amplitude of 4.4 ± 0.4 km s−1and period consistent with photometry of the p-mode oscillation. This detection provides further evidence the 342 s mode is radial in nature, and that the Baade–Wesselink method can be used with additional observations to constrain the stellar mass and radius.

     
    more » « less
  2. ABSTRACT

    Blue large-amplitude pulsators (BLAPs) make up a rare class of hot pulsating stars with effective temperatures of ≈30 000 K and surface gravities of 4.0–5.0 dex (cgs). The evolutionary origin and current status of BLAPs is not well understood, largely based on a lack of spectroscopic observations and no available mass constraints. However, several theoretical models have been proposed that reproduce their observed properties, including studies that identify them as pulsating helium-core pre-white dwarfs (He-core pre-WDs). We present here follow-up high-speed photometry and phase-resolved spectroscopy of one of the original 14 BLAPs, OGLE-BLAP-009, discovered during the Optical Gravitational Lensing Experiment. We aim to explore its pulsation characteristics and determine stellar properties such as mass and radius in order to test the consistency of these results with He-core pre-WD models. Using the mean atmospheric parameters found using spectroscopy, we fit a spectral energy distribution to obtain a preliminary estimate of the radius, luminosity, and mass by making use of the Gaia parallax. We then compare the consistency of these results to He-core pre-WD models generated using Modules for Experiments in Stellar Astrophysics, with predicted pulsation periods implemented using gyre. We find that our mass constraints are in agreement with a low-mass He-core pre-WD of ≈0.30 M⊙.

     
    more » « less
  3. ABSTRACT

    We conduct a systematic search for periodic variables in the hot subdwarf catalogue using data from the Zwicky Transient Facility. We present the classification of 67 HW Vir binaries, 496 reflection effect, pulsation or rotation sinusoids, 11 eclipsing signals, and 4 ellipsoidally modulated binaries. Of these, 486 are new discoveries that have not been previously published including a new mass-transferring hot subdwarf binary candidate. These sources were determined by applying the Lomb–Scargle and box least squares periodograms along with manual inspection. We calculated variability statistics on all periodic sources, and compared our results to traditional methods of determining astrophysical variability. We find that ≈60 per cent of variable targets, mostly sinusoidal variability, would have been missed using a traditional varindex cut. Most HW Virs, eclipsing systems, and all ellipsoidal variables were recovered with a varindex >0.02. We also find a significant reddening effect, with some variable hot subdwarfs meshing with the main-sequence stripe in the Hertzsprung–Russell diagram. Examining the positions of the variable stars in Galactic coordinates, we discover a higher proportion of variable stars within |b| < 25° of the Galactic plane, suggesting that the Galactic plane may be fertile grounds for future discoveries if photometric surveys can effectively process the clustered field.

     
    more » « less
  4. Free, publicly-accessible full text available May 1, 2024
  5. Abstract V907 Scorpii is a unique triple system in which the inner binary component has been reported to have switched on and off eclipses several times in modern history. In spite of its peculiarity, observational data on this system are surprisingly scarce. Here we make use of the recent Transiting Exoplanet Survey Satellite observations, as well as our own photometric and spectroscopic data, to expand the overall data set and study the V907 Sco system in more detail. Our analysis provides both new and improved values for several of its fundamental parameters: (i) the masses of the stars in the eclipsing binary are 2.74 ± 0.02 M ⊙ and 2.56 ± 0.02 M ⊙ ; and (ii) the third component is a solar-type star with mass 1.06 − 0.10 + 0.11 M ⊙ (90% C.L.), orbiting the binary on an elongated orbit with an eccentricity of 0.47 ± 0.02 and a period of 142.01 ± 0.05 days. The intermittent intervals of time when eclipses of the inner binary are switched on and off are caused by a mutual 26 .° 2 − 2.2 + 2.6 inclination of the inner- and outer-orbit planes, and a favorable inclination of about 71° of the total angular momentum of the system. The nodal precession period is P ν = 63.5 − 2.6 + 3.3 yr. The inner binary will remain eclipsing for another ≃26 yr, offering an opportunity to significantly improve the parameters of the model. This is especially true during the next decade when the inner-orbit inclination will increase to nearly 90°. Further spectroscopic observations are also desirable, as they can help to improve constraints on the system’s orbital architecture and its physical parameters. 
    more » « less
  6. ABSTRACT

    AM CVn-type systems are ultracompact, helium-accreting binary systems that are evolutionarily linked to the progenitors of thermonuclear supernovae and are expected to be strong Galactic sources of gravitational waves detectable to upcoming space-based interferometers. AM CVn binaries with orbital periods ≲20–23 min exist in a constant high state with a permanently ionized accretion disc. We present the discovery of TIC 378898110, a bright (G = 14.3 mag), nearby (309.3 ± 1.8 pc), high-state AM CVn binary discovered in TESS two-minute-cadence photometry. At optical wavelengths, this is the third-brightest AM CVn binary known. The photometry of the system shows a 23.07172(6) min periodicity, which is likely to be the ‘superhump’ period and implies an orbital period in the range 22–23 min. There is no detectable spectroscopic variability. The system underwent an unusual, year-long brightening event during which the dominant photometric period changed to a shorter period (constrained to 20.5 ± 2.0 min), which we suggest may be evidence for the onset of disc-edge eclipses. The estimated mass transfer rate, $\log (\dot{M} / \mathrm{M_\odot } \, \mathrm{yr}^{-1}) = -6.8 \pm 1.0$, is unusually high and may suggest a high-mass or thermally inflated donor. The binary is detected as an X-ray source, with a flux of $9.2 ^{+4.2}_{-1.8} \times 10^{-13}$ erg cm−2 s−1 in the 0.3–10 keV range. TIC 378898110 is the shortest-period binary system discovered with TESS, and its large predicted gravitational-wave amplitude makes it a compelling verification binary for future space-based gravitational wave detectors.

     
    more » « less
  7. Abstract Hot subdwarf stars are mostly stripped red giants that can exhibit photometric variations due to stellar pulsations, eclipses, the reflection effect, ellipsoidal modulation, and Doppler beaming. Detailed studies of their light curves help constrain stellar parameters through asteroseismological analyses or binary light-curve modeling and generally improve our capacity to draw a statistically meaningful picture of this enigmatic stage of stellar evolution. From an analysis of Gaia DR2 flux errors, we have identified around 1200 candidate hot subdwarfs with inflated flux errors for their magnitudes—a strong indicator of photometric variability. As a pilot study, we obtained 2 minute cadence TESS Cycle 2 observations of 187 candidate hot subdwarfs with anomalous Gaia flux errors. More than 90% of our targets show significant photometric variations in their TESS light curves. Many of the new systems found are cataclysmic variables, but we report the discovery of several new variable hot subdwarfs, including HW Vir binaries, reflection-effect systems, pulsating sdBV s stars, and ellipsoidally modulated systems. We determine atmospheric parameters for select systems using follow-up spectroscopy from the 3 m Shane telescope. Finally, we present a Fourier diagnostic plot for classifying binary light curves using the relative amplitudes and phases of their fundamental and harmonic signals in their periodograms. This plot makes it possible to identify certain types of variables efficiently, without directly investigating their light curves, and may assist in the rapid classification of systems observed in large photometric surveys. 
    more » « less
  8. ABSTRACT Current models predict that binary interactions are a major ingredient in the formation of bipolar planetary nebulae (PNe) and pre-planetary nebulae (PPNe). Despite years of radial velocity (RV) monitoring, the paucity of known binaries amongst the latter systems means data are insufficient to examine this relationship in detail. In this work, we report on the discovery of a long-period (P = 2654 ± 124 d) binary at the centre of the Galactic bipolar PPN IRAS 08005−2356 (V510 Pup), determined from long-term spectroscopic and near-infrared time-series data. The spectroscopic orbit is fitted with an eccentricity of 0.36 ± 0.05, which is similar to that of other long-period post-AGB binaries. Time-resolved Hα profiles reveal high-velocity outflows (jets) with deprojected velocities up to 231$_{-27}^{+31}$ km s−1 seen at phases when the luminous primary is behind the jet. The outflow traced by Hα is likely produced via accretion on to a main-sequence companion, for which we calculate a mass of 0.63 ± 0.13 M⊙. This discovery is one of the first cases of a confirmed binary PPN and demonstrates the importance of high-resolution spectroscopic monitoring surveys using large telescopes in revealing binarity among these systems. 
    more » « less
  9. null (Ed.)