skip to main content


Search for: All records

Creators/Authors contains: "Basu, Kanad"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2025
  2. Free, publicly-accessible full text available June 5, 2024
  3. Prevention of integrated circuit counterfeiting through logic locking faces the fundamental challenge of securing an obfuscation key against both physical and algorithmic threats. Previous work has focused on strengthening the logic encryption to protect the key against algorithmic attacks, but failed to provide adequate physical security. In this work, we propose a logic locking scheme that leverages the non-volatility of the nanomagnet logic (NML) family to achieve both physical and algorithmic security. Polymorphic NML minority gates protect the obfuscation key against algorithmic attacks, while a strain-inducing shield surrounding the nanomagnets provides physical security via a self-destruction mechanism. 
    more » « less
  4. The recent advancement in quantum technology has initiated a new round of cryptosystem innovation, i.e., the emergence of Post-Quantum Cryptography (PQC). This new class of cryptographic schemes is intended to be mathematically resistant against any known attacks using quantum computers, but, at the same time, be fully implementable using traditional semiconductor technology. The National Institutes of Standards and Technology (NIST) has already started the PQC standardization process, and the initial pool of 69 submissions has been reduced to 26 Round 2 candidates. Echoing the pace of the PQC "revolution," this paper gives a detailed and thorough introduction to recent advances in the hardware implementation of PQC schemes, including challenges, new implementation methods, and novel hardware architectures. Specifically, we have: (i) described the challenges and rewards of implementing PQC in hardware; (ii) presented the novel methodology for the design-space exploration of PQC implementations using high-level synthesis (HLS); (iii) introduced a new underexplored PQC scheme (binary Ring-Learning-with-Errors), as well as its novel hardware implementation for possible lightweight applications. The overall content delivered by this paper could serve multiple purposes: (i) provide useful references for the potential learners and the interested public; (ii) introduce new areas and directions for potential research to the VTS community; (iii) facilitate the PQC standardization process and the exploration of related new ways of implementing cryptography in existing and emerging applications. 
    more » « less