skip to main content


Search for: All records

Creators/Authors contains: "Baumbach, R. E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Results are reported for Mn intercalated Zr 2 Te 2 P, where x-ray diffraction , energy dispersive spectroscopy, and transmission electron microscopy measurements reveal that the van der Waals bonded Te–Te layers are partially filled by Zr and Mn ions. This leads to the chemical formulas Zr 0.07 Zr 2 Te 2 P and Mn 0.06 Zr 0.03 Zr 2 Te 2 P for the parent and substituted compounds, respectively. The impact of the Mn ions is seen in the anisotropic magnetic susceptibility, where Curie–Weiss fits to the data indicate that the Mn ions are in the divalent state. Heat capacity and electrical transport measurements reveal metallic behavior, but the electronic coefficient of the heat capacity ( γ Mn ≈ 36.6 mJ (mol·K 2 ) −1 ) is enhanced by comparison to that of the parent compound. Magnetic ordering is seen at T M ≈ 4  K, where heat capacity measurements additionally show that the phase transition is broad, likely due to the disordered Mn distribution. This transition also strongly reduces the electronic scattering seen in the normalized electrical resistance. These results show that Mn substitution simultaneously introduces magnetic interactions and tunes the electronic state, which improves prospects for inducing novel behavior in Zr 2 Te 2 P and the broader family of ternary tetradymites. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. The correlated electron material CePd2P2 crystallizes in the ThCr2Si2 structure and orders ferromagnetically at 29 K. Prior work by Lai et al. [Phys. Rev. B 97, 224406 (2018)] found evidence for a ferromagnetic quantum critical point induced by chemical compression via substitution of Ni for Pd. However, disorder effects due to the chemical substitution interfere with a simple analysis of the possible critical behavior. In the present paper, we examine the temperature—pressure—magnetic-field phase diagram of single crystalline CePd2P2 to 25 GPa using a combination of resistivity, magnetic susceptibility, and x-ray diffraction measurements. We find that the ferromagnetism appears to be destroyed near 12 GPa, without any change in the crystal structure. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. Abstract

    High entropy alloys (HEA) are an unusual class of materials where mixtures of elements are stochastically arrayed on a simple crystalline lattice. These systems exhibit remarkable functionality, often along several distinct axes: e.g., the examples [TaNb]1-x(TiZrHf)xare high strength and damage resistant refractory metals that also exhibit superconductivity with large upper critical fields. Here we report the discovery of anf-electron containing HEA, [TaNb]0.31(TiUHf)0.69, which is the first to include an actinide ion. Similar to the Zr-analogue, this material crystallizes in a body-centered cubic lattice with the lattice constanta = 3.41(1) Å and exhibits phonon mediated superconductivity with a transition temperaturesTc ≈ 3.2 K and upper critical fieldsHc2 ≈ 6.4 T. These results expand this class of materials to include actinide elements, shows that superconductivity is robust in this sub-group, and opens the path towards leveraging HEAs as functional waste forms for a variety of radioisotopes.

     
    more » « less